Petrology of Calc-Alkaline Lavas at Volcn Ollage and the Origin of Compositional Diversity at Central Andean Stratovolcanoes |
| |
Authors: | FEELEY, TODD C. DAVIDSON, JON P. |
| |
Affiliation: | Department of Earth and Space Sciences, University of California Los Angeles, California 90024, USA |
| |
Abstract: | Volcn Ollage (2117'S) is a large stratovolcano that liesslightly east of the main axis of Quaternary Volcanoes in theAndean Central Volcanic Zone (CVZ). Euptive products range frombasaltic andesite to dacite and define a high-K, calc-alkalinesuite. This compositional range is similar to the collectivecompositional range of the other stratovolcanoes in the CVZ,and it provides a record of both early and late-stage differentiationprocesses operating at the stratovolcanoes. The volumetrically dominant andesitic and dacitic lavas aredivided into four eruptive series on the basis of vent locationsand petrography. In ascending stratigraphic order they are:the Vinta Loma, Chasca Orkho, post-collapse, and La Celosa series.Whole-rock compositions of the lavas are remarkably similarregardless of eruptive series. Variations in phenocryst assemblagesand magmatic fo2 however, suggest differences in subliquidusvolatile contents for magma chambers developed beneath the summitof the volcano versus those developed beneath the flanks. Basalticandesite magmas are principally preserved as quenched inclusionswithin the andesitic and dacitie lava flows. Large ranges inisotopic ratios over a narrow compositional range indicate thatthe basaltic andesites were derived by crystal fractionationcoupled with large amounts of crustal assimilation. IncreasingCe/Yb ratios with decreasing Yb contents further suggest thatthis initial stage of differentiation occurred at deep crustallevels where garnet was stable. Additional supporting evidencefor differentiation in the deep crust includes isotopic andtrace element compositions that indicate assimilation by thebasaltic andesite magmas of a crust different from upper-crustalrocks exposed at present in the region. Whole-rock major and trace element trends of the dacitic lavascan be simulated largely by fractional crystallization of parentalandesitic magma. The fractionating assemblages for the differenteruptive series are consistent with the observed modes of theparent magmas. Small increases in Sr isotope ratios with increasingRb contents indicate that the fractionating magmas also assimilatedsmall amounts of wall rocks similar in composition to the upper-crustalbasement to the volcano. Consideration of the chemical trends, mineral compositions,and eruptive history of Ollage rocks permits construction ofa model for the evolution of shallow crustal magma chambersbeneath the stratovolcanoes in the CVZ. At a relatively maturestage, the magma chambers may be compositionally, thermally,and density stratified. Temperatures estimated from Fe-Ti oxideand pyroxene thermometry for the chambers beneath Ollage rangefrom 1000 to 790C with increasing SiO2 from 59 to 67 wt.% inthe upper reaches, and from 1150 to 1020C with increasing SiO2from 53 to 59 wt.% in the lower reaches. The occurrence of basalticandesite magmatic inclusions within the intermediate lavas andthe repeated eruption of monotonous composition andesitic magmasindicate that the shallow chambers are periodically replenishedwith parental basaltic andesite magmas. Ubiquitous, reversely zoned plagioclase and pyroxene phenocrystsin the lavas at Ollage suggest that convective cooling of thebasaltic andesite releases buoyant derivative liquid that mixeswith the overlying intermediate-composition body of the chambers.Further crystallization and differentiation of the intermediatemagmas may take place in solidification zones at the boundariesof the magma chambers. If so, the return of residual liquidfrom the crystallizing margins and mixing with the interiorare highly efficient such that magma differentiation can bemodeled as a simple, homogeneous, fractional crystallizationprocess. |
| |
Keywords: | |
本文献已被 Oxford 等数据库收录! |
|