首页 | 本学科首页   官方微博 | 高级检索  
     

倾斜边坡多道面波分析中的最小偏移距估计方法
引用本文:戴靠山,汪士权,刘康,游庆瑜. 倾斜边坡多道面波分析中的最小偏移距估计方法[J]. 地震学报, 2022, 44(2): 327-338. DOI: 10.11939/jass.20210098
作者姓名:戴靠山  汪士权  刘康  游庆瑜
作者单位:1.中国成都 610200 四川大学灾后重建与管理学院
基金项目:上海佘山地球物理国家野外科学观测研究站开放基金;国家自然科学基金
摘    要:
为减小倾斜边坡中能量较强的近场体波对面波识别的干扰,确保多道面波分析方法接收到的瑞雷波分量具有较强的能量,本文通过分析地下震源在倾斜边坡产生的瑞雷波及其传播规律,基于几何地震学提出了在倾斜地表生成瑞雷波的最小偏移距的经验公式,建立了界面起伏的层状倾斜边坡模型,从而获得模拟共炮点记录,并将基于共炮点记录得到的地表质点运动...

关 键 词:多道面波分析方法(MASW)  瑞雷波  地下震源  最小偏移距  边坡响应
收稿时间:2021-06-04

The nearest offset distance estimation method for multi-channel analysis of surface waves in slope
Dai Kaoshan,Wang Shiquan,Liu Kang,You Qingyu. The nearest offset distance estimation method for multi-channel analysis of surface waves in slope[J]. Acta Seismologica Sinica, 2022, 44(2): 327-338. DOI: 10.11939/jass.20210098
Authors:Dai Kaoshan  Wang Shiquan  Liu Kang  You Qingyu
Abstract:
In order to reduce the interference of energetic near-field body waves to surface wave identification and to ensure Rayleigh wave components with strong energy to be collected by multi-channel analysis of surface waves (MASW) method in the slope, this study firstly analyzed the Rayleigh wave propagation mechanism induced by the underground passive source on the slope. Secondly, based on geometric seismology, an empirical formula for the minimum offset of the Rayleigh wave generated on the sloping surface is proposed, and the layered slope with undulating interface is established so as to obtain the simulated common shot point records. Then by comparing the surface particle motion trajectory and dispersion calculation results obtained from the common shot point records with the theoretical values and estimated values, the results show that the four physical quantities have a strong correlation, which indicates that the proposed minimum offset estimation method in this study can be adopted to guide surface wave exploration of layered slopes. 
Keywords:
本文献已被 万方数据 等数据库收录!
点击此处可从《地震学报》浏览原始摘要信息
点击此处可从《地震学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号