首页 | 本学科首页   官方微博 | 高级检索  
     

基于GPT3模型的ZTD及PWV反演精度分析
引用本文:黄聪,郭杭. 基于GPT3模型的ZTD及PWV反演精度分析[J]. 大地测量与地球动力学, 2022, 42(5): 489-493. DOI: 10.14075/j.jgg.2022.05.009
作者姓名:黄聪  郭杭
作者单位:南昌大学信息工程学院,南昌市学府大道999号,330031
摘    要:
使用亚洲区域18个IGS测站和中国区域内16个探空站2016~2018年的数据,研究GPT3模型反演天顶对流层延迟(ZTD)和大气可降水量(PWV)的精度,并与其他GPT系列模型进行对比。结果表明,GPT3-1模型估计的ZTD的bias均值和最大值均最小,分别为1.34 mm和14.06 mm;GPT3模型整体精度略优于GPT2w模型,优于GPT2模型。探空站处GPT3模型反演的PWV的bias和RMSE均表现出较强的季节性特征;由GPT3模型反演的PWV的月均值可知,GPT3-1模型比GPT3-5模型具有更高的精度和稳定性。

关 键 词:GPT3模型  天顶对流层延迟  大气可降水量  精度评估  偏差  

Accuracy Analysis of ZTD and Precipitable Water Vapor Inversion Based on GPT3 Model
HUANG Cong,GUO Hang. Accuracy Analysis of ZTD and Precipitable Water Vapor Inversion Based on GPT3 Model[J]. Journal of Geodesy and Geodynamics, 2022, 42(5): 489-493. DOI: 10.14075/j.jgg.2022.05.009
Authors:HUANG Cong  GUO Hang
Abstract:
Using the data of 18 IGS stations in Asian region and 16 radiosonde stations in China region from 2016 to 2018, the accuracy of zenith tropospheric delay (ZTD) and precipitable water vapor (PWV) inversed by GPT3 model are studied, and compared with other GPT series models. The results show that the ZTD of the GPT3-1 model has the smallest mean and maximum deviation bias values of 1.34 mm and 14.06 mm, respectively; the accuracy of GPT3 model is slightly better than GPT2w model and better than GPT2 model. The bias and root mean square error(RMSE) of the GPT3 model-derived PWV at the radiosonde stations show strong seasonal characteristics, and the GPT3-1 model has higher accuracy and stability than the GPT3-5 model, as shown by the monthly mean values of the GPT3 model-derived PWV.
Keywords:GPT3 model  zenith tropospheric delay(ZTD)  precipitable water vapor(PWV)  accuracy evaluation  bias  
本文献已被 万方数据 等数据库收录!
点击此处可从《大地测量与地球动力学》浏览原始摘要信息
点击此处可从《大地测量与地球动力学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号