首页 | 本学科首页   官方微博 | 高级检索  
     

基于ART理论的自组织神经网络模型在水资源分类中的应用
引用本文:罗先香,邓伟. 基于ART理论的自组织神经网络模型在水资源分类中的应用[J]. 吉林大学学报(地球科学版), 2001, 31(1): 54-57
作者姓名:罗先香  邓伟
作者单位:中国科学院 长春 地理研究所,吉林 长春 130021
基金项目:中国科学院“湖沼三期”特别支持资助项目(ZKHZ-3-5)
摘    要:BP和RBF神经网络技术以其强大的学习功能应用于水资源分类 ,取得了很好的效果。但当不具备已知样本时 ,以上技术很难应用。提出了可塑性较强、无监督的A -K网络模型 ,阐述了其基本原理和算法 ,并将其用于水文水资源研究领域中。实例表明 ,该方法能较理想地解决已知样本的分类问题 ,具有良好的应用前景

关 键 词:水资源分类  ART理论  自组织  人工神经网络
文章编号:1008-0058(2001)01-0054-05
修稿时间:2000-04-12

THE APPLICATION OF SELF-ORGANIZING NEURAL NETWORK MODELS BASED ON THE THEORY OF ART IN WATER RESOURCES CLASSIFICATION
LUO Xian_xiang,DENG Wei. THE APPLICATION OF SELF-ORGANIZING NEURAL NETWORK MODELS BASED ON THE THEORY OF ART IN WATER RESOURCES CLASSIFICATION[J]. Journal of Jilin Unviersity:Earth Science Edition, 2001, 31(1): 54-57
Authors:LUO Xian_xiang  DENG Wei
Abstract:Back propagation and radial basis function neural network methods have been applied to water resources areas due to theirs powerful learning abilitys and many good results have been achieved. These methods can not be applied successfully if there are no known samples for learning. In this paper, the model of A-K neural network, which has plasticity, and is unsupervised, is worked out. The principle and algorithm are described. The application of A-K network models in water resources shows that the method can deal with many problems about classification of no known samples for learning and will have a good applied future.
Keywords:water resources the theory of ART  self-organization  artificial neural network
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号