首页 | 本学科首页   官方微博 | 高级检索  
     

中国格点化日降水极值统计模型及阈值的选取
引用本文:张昕怡 方国华 闻昕 叶健 郭玉雪. 中国格点化日降水极值统计模型及阈值的选取[J]. 气候变化研究进展, 2017, 13(4): 346-355. DOI: 10.12006/j.issn.1673-1719.2016.186
作者姓名:张昕怡 方国华 闻昕 叶健 郭玉雪
作者单位:1.河海大学水利水电学院,南京 210098;2 江苏省水利厅,南京 210029
基金项目:国家自然科学基金资助项目;长江科学院开放研究基金资助项目;中央高校基本科研业务费专项资金资助
摘    要:采用年最大值法(AM)及超阈值峰量法(POT)分别构建基于0.5°×0.5°网格的全国地面日降水极值序列,建立基于广义极值分布(GEV)和广义帕累托分布(GPD)的降水极值统计模型,通过K-S检验评估模型拟合效果,研究全国日降水极值的统计规律及其空间分布特征,提出适用于不同地区极端日降水的极值分布模型与阈值选取标准,结果表明:(1)POT序列比AM序列更符合降水极值序列的要求;(2)为便于比较并提高模型拟合效果,POT序列的阈值由百分位数法确定效果较好;(3)阈值方案优选结果在空间分布上与中国干湿区域的划分有很好的相关性,在湿润地区宜将第90~94百分位数作为阈值,在半湿润和半干旱地区宜将第94~97百分位数作为阈值,在干旱地区则使用第97~99百分位数较为合适。

关 键 词:极端降水事件  广义极值分布  广义帕累托分布  K-S检验  阈值  
收稿时间:2016-09-12
修稿时间:2017-02-22

Statistical Model and Threshold Value Selection of Gridded Daily Precipitation Extremes in China
Zhang Xinyi,Fang Guohua,Wen Xin,Ye Jian,Guo Yuxue. Statistical Model and Threshold Value Selection of Gridded Daily Precipitation Extremes in China[J]. Progressus Inquisitiones DE, 2017, 13(4): 346-355. DOI: 10.12006/j.issn.1673-1719.2016.186
Authors:Zhang Xinyi  Fang Guohua  Wen Xin  Ye Jian  Guo Yuxue
Affiliation:1.College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China; 2.Water Resources Department of Jiangsu Province, Nanjing 210029, China
Abstract:Based on the national daily precipitation 0.5°× 0.5° gridded dataset, annual maximum (AM) samples and peaks over threshold (POT) samples were selected. The generalized extreme value distribution (GEV) and the generalized Pareto distribution (GPD) were employed to establish statistical models of precipitation extremes respectively. The goodness of fit of each model was evaluated by Kolmogorov-Smirnov test. The statistical analysis was performed. Extreme value distribution model of precipitation and threshold value selection criteria applicable to different areas were proposed. The results show that: (1) The simulated results of POT samples are superior to those of AM samples; (2) The method of sample percentile for determining threshold value is better than the others; (3) The geographical distribution pattern of optimization results is similar to the distribution of dry and wet regions in China. The 90?94 percentile is the fittest to determine threshold value in humid regions. The 94?97 percentile is better in semi-arid and sub-humid regions. The 97?99 percentile is the most suitable in arid regions.
Keywords:extreme precipitation events   generalized extreme value   generalized Pareto distribution   Kolmogorov-Smirnov test  threshold  
本文献已被 CNKI 等数据库收录!
点击此处可从《气候变化研究进展》浏览原始摘要信息
点击此处可从《气候变化研究进展》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号