Probabilistic Analysis of Fracture Reactivation Associated with Deep Underground CO2 Injection |
| |
Authors: | Jaewon Lee Ki-Bok Min Jonny Rutqvist |
| |
Affiliation: | 1. Department of Energy Resources Engineering, Seoul National University, Seoul, Republic of Korea 2. Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, USA
|
| |
Abstract: | In the context of carbon capture and storage, deep underground injection of CO2 induces the geomechanical changes within and around the injection zone and their impact on CO2 storage security should be evaluated. In this study, we conduct coupled multiphase fluid flow and geomechanical modeling to investigate such geomechanical changes, focusing on probabilistic analysis of injection-induced fracture reactivation (such as shear slip) that could lead to enhanced permeability and CO2 migration across otherwise low-permeability caprock formations. Fracture reactivation in terms of shear slip was analyzed by implicitly considering the fracture orientations generated using the Latin hypercube sampling method, in one case using published fracture statistics from a CO2 storage site. The analysis was conducted by a coupled multiphase fluid flow and geomechanical simulation to first calculate the three-dimensional stress evolution during a hypothetical CO2 injection operation and then evaluate the probability of shear slip considering the statistical fracture distribution and a Coulomb failure analysis. We evaluate the probability of shear slip at different points within the injection zone and in the caprock just above the injection zone and relate this to the potential for opening of new flow paths through the caprock. Our analysis showed that a reverse faulting stress field would be most favorable for avoiding fracture shear reactivation, but site-specific analyses will be required because of strong dependency of the local stress field and fracture orientations. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|