首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Changes in deep-water CO2 concentrations over the last several decades determined from discrete pCO2measurements
Institution:1. Atlantic Oceanographic and Meteorological Laboratory of NOAA, 4301 Rickenbacker Cswy., Miami, FL 33149, USA;2. Cooperative Institute for Marine and Atmospheric Studies, University of Miami, 4600 Rickenbacker Cswy., Miami, FL 33149, USA;3. Lamont-Doherty Earth Observatory of Columbia University, Route 9W, Palisades, NY 10964, USA;4. Pacific Marine Environmental Laboratory of NOAA, 7600 Sand Point Way NE, Seattle, WA 98115, USA;5. Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA;1. Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Unidad Sinaloa, Blvd. Juan de Dios Bátiz Paredes No. 250, San Joachín C.P. 81101, Guasave, SIN, Mexico;2. Departamento de Oceanografía Biológica. Centro de Investigación Científica y de Educación Superior de Ensenada, Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, B.C., Mexico;3. Universidad Autónoma de Baja California, Facultad de Ciencias Marinas, Ensenada, B.C. A.P. 453, Mexico;4. Departamento de Ecología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, B.C., Mexico;1. Nanotube Research Center, National Institute of Advanced Industrial Science and Technology, 5-2, 1-1-1 Higashi, Tsukuba 305-8565, Japan;2. Smart Energy Research Institute, NEC Corporation, 34 Miyukigaoka, Tsukuba 305-8561, Japan;3. Faculty of Science and Technology, Meijo University, 1-501 Shiogamaguchi, Tenpaku, Nagoya 468-8502, Japan;1. Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany;2. Organic Geochemistry Unit, School of Chemistry and Cabot Institute, University of Bristol, BS8 1TS Bristol, UK;3. Canada-Nunavut Geosciences Office, NU X0A 0H0 Iqaluit, Canada;1. Radiology and Imaging Department, Liverpool Heart Chest Hospital, Liverpool, UK;2. Cardiovascular Program ICCC, IR, HSCiSP, IIB-Sant Pau, Barcelona, Spain;3. Department of Clinical Radiology, Great Ormond Street Hospital, London, UK;4. UCL Great Ormond Street Institute for Child Health, London, UK;5. St. Luke''s Medical Center-Global City, Taguig City, Philippines;6. Christiana Care Health System, Diagnostic Radiology, 4755 Ogletown-Stanton Road, Newark, DE, 19718, USA;7. Radiology Department, Cairo University Hospitals, Cairo, Egypt;8. Aswan Heart Center, Aswan Governorate, Egypt;9. Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University Hospital of Palermo, Via del Vespro 129, 90127 Palermo, Italy;1. Department of General Thoracic Surgery, Georges Pompidou European Hospital, Descartes University, Paris, France;2. Department of Pathology, Georges Pompidou European Hospital, Descartes University, Paris, France;3. Department of General Thoracic Surgery, Cedar Surgical Centre, Bois-Guillaume, France
Abstract:Detection and attribution of hydrographic and biogeochemical changes in the deep ocean are challenging due to the small magnitude of their signals and to limitations in the accuracy of available data. However, there are indications that anthropogenic and climate change signals are starting to manifest at depth. The deep ocean below 2000 m comprises about 50% of the total ocean volume, and changes in the deep ocean should be followed over time to accurately assess the partitioning of anthropogenic carbon dioxide (CO2) between the ocean, terrestrial biosphere, and atmosphere. Here we determine the changes in the interior deep-water inorganic carbon content by a novel means that uses the partial pressure of CO2 measured at 20 °C, pCO2(20), along three meridional transects in the Atlantic and Pacific oceans. These changes are measured on decadal time scales using observations from the World Ocean Circulation Experiment (WOCE)/World Hydrographic Program (WHP) of the 1980s and 1990s and the CLIVAR/CO2 Repeat Hydrography Program of the past decade. The pCO2(20) values show a consistent increase in deep water over the time period. Changes in total dissolved inorganic carbon (DIC) content in the deep interior are not significant or consistent, as most of the signal is below the level of analytical uncertainty. Using an approximate relationship between pCO2(20) and DIC change, we infer DIC changes that are at the margin of detectability. However, when integrated on the basin scale, the increases range from 8–40% of the total specific water column changes over the past several decades. Patterns in chlorofluorocarbons (CFCs), along with output from an ocean model, suggest that the changes in pCO2(20) and DIC are of anthropogenic origin.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号