首页 | 本学科首页   官方微博 | 高级检索  
     


Stochastic evaluation of simple pairing approaches to reconstruct incomplete rainfall time series
Authors:Daniele Pedretti  Roger D. Beckie
Affiliation:1.Earth, Ocean and Atmospheric Sciences, University of British Columbia (UBC),Vancouver,Canada
Abstract:
Two-station pairing approaches are routinely used to infill missing information in incomplete rainfall databases. We evaluated the performance of three simple methodologies to reconstruct incomplete time series in presence of variable nonlinear correlation between data pairs. Nonlinearity stems from the statistics describing the marginal peak-over-threshold (POT) values of rainfall events. A Monte Carlo analysis was developed to quantitatively assess expected errors from the use of chronological pairing (CP) with linear and nonlinear regression and frequency pairing (FP). CP is based on a priori selection of regression functions, while FP is based on matching the probability of non-exceedance of an event from one time series with the probability of non-exceedance of a similar event from another time series. We adopted a generalized Pareto (GP) model to describe POT events, and a t-copula algorithm to generate reference nonlinearly correlated pairs of random temporal distributions distributed according with the GP model. The results suggest that the optimal methodology strongly depends on GP statistics. In general, CP seems to provide the lowest errors when GP statistics were similar and correlation became linear; we found that a power-2 function performs well for the selected statistics when the number of missing points is limited. FP outperforms the other methods when POT statistics are different and variables are markedly nonlinearly correlated. Ensemble-based results seem to be supported by the analysis of observed precipitation at two real-world gauge stations.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号