首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Landslide susceptibility mapping using rough sets and back-propagation neural networks in the Three Gorges, China
Authors:Xueling Wu  Ruiqing Niu  Fu Ren  Ling Peng
Institution:1. Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan, 430074, China
2. School of Resource and Environmental Science, Wuhan University, Wuhan, 430079, China
Abstract:In the Three Gorges of China, there are frequent landslides, and the potential risk of landslides is tremendous. An efficient and accurate method of generating landslide susceptibility maps is very important to mitigate the loss of lives and properties caused by these landslides. This paper presents landslide susceptibility mapping on the Zigui-Badong of the Three Gorges, using rough sets and back-propagation neural networks (BPNNs). Landslide locations were obtained from a landslide inventory map, supported by field surveys. Twenty-two landslide-related factors were extracted from the 1:10,000-scale topographic maps, 1:50,000-scale geological maps, Landsat ETM + satellite images with a spatial resolution of 28.5 m, and HJ-A satellite images with a spatial resolution of 30 m. Twelve key environmental factors were selected as independent variables using the rough set and correlation coefficient analysis, including elevation, slope, profile curvature, catchment aspect, catchment height, distance from drainage, engineering rock group, distance from faults, slope structure, land cover, topographic wetness index, and normalized difference vegetation index. The initial, three-layered, and four-layered BPNN were trained and then used to map landslide susceptibility, respectively. To evaluate the models, the susceptibility maps were validated by comparing with the existing landslide locations according to the area under the curve. The four-layered BPNN outperforms the other two models with the best accuracy of 91.53 %. Approximately 91.37 % of landslides were classified as high and very high landslide-prone areas. The validation results show sufficient agreement between the obtained susceptibility maps and the existing landslide locations.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号