首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Trace element partitioning and substitution mechanisms in calcium perovskites
Authors:Email author" target="_blank">Alexandre?CorgneEmail author  Bernard?J?Wood
Institution:(1) Department of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, UK;(2) Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road, NW Washington, DC 20015, USA
Abstract:We have determined the partition coefficients of a large number of trace elements between CaTiO3 perovskite and anhydrous silicate melts at atmospheric pressure and 3 GPa. Determination of the concentration limits of Henryrsquos law behaviour in the CaO-Al2O3–SiO2–TiO2 system reveals that the incorporation of rare earth elements (REE) and tetravalent large ion lithophile elements (LILE4+ such as U and Th) at the Ca-site of CaTiO3 perovskite occurs with charge compensation through Ca-vacancy formation rather than by coupled substitution of Al for Ti. When melt composition is varied, we find that partition coefficients for REE and Th are strong functions of the CaO content of the melt. The observed trends are in excellent agreement with those predicted from the Ca-vacancy model. Given that they adopt the same crystal structure and have similar trace element partitioning behaviour, CaTiO3 perovskite and the deep mantle phase CaSiO3 perovskite can be considered analogous to one another. When the analogy is pursued in detail, we find that partitioning into both phases follows the composition-dependence predicted by the Ca-vacancy model. Thus, substitution of REE, U4+ and Th into CaSiO3 in the lower mantle also occurs with Ca-vacancy formation to balance charge. Furthermore when 2+, 3+ and 4+ partition coefficients for both phases are plotted as functions of CaO melt content, the trends for CaSiO3 and CaTiO3 appear to be continuous. This surprising result means that partitioning into Ca-perovskite is independent of pressure and temperature and also of whether or not the host is CaSiO3 or CaTiO3. One implication is that CaSiO3 crystallising from a peridotitic magma ocean may have partition coefficients for Th and U up to about 400. Crystallisation and sequestration of as little as 0.25 volume% of this phase in the lower mantle early in earth history would make a significant contribution to current mantle heat production.Electronic Supplementary Material Supplementary material is available for this article at
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号