首页 | 本学科首页   官方微博 | 高级检索  
     


Melting equilibria in multicomponent systems and liquidus/solidus convergence in mantle peridotite
Authors:D. Walker
Affiliation:(1) Lamont-Doherty Geological Observatory and Dept. of Geology, Columbia University, 10964 Palisades, New York, USA
Abstract:The melting of undepleted mantle peridotite proceeds through a temperature interval which decreases with increasing pressure. If liquidus and solidus actually meet in the range 100–150 Kb, as suggested by Herzberg (1983), peridotite must transform there directly to a melt of its own composition. Thermodynamic analysis shows that such a liquidus/solidus meeting would be very unlikely in a system as chemically complex as mantle peridotite and would require that unanticipated phase equilibrium relations suppress all incongruent melting behavior. But Takahashi and Scarfe's (1985) preliminary experiments suggest that the upper mantle itself may indeed have a special composition with respect to phase equilibrium relations between liquids and solids at very high pressure. If so, mantle peridotite composition cannot be generated as a crystal accumulate or melting residue, because these two popular theories of origin are difficult to reconcile with a supposed eutecticlike composition. If upper mantle peridotite were itself a solidified liquid composition produced either as a partial melt or, more likely, as a crystallization residue of some more primitive melt composition representative of the whole mantle, an approach of liquidus to solidus might be expected at high pressure although the phase relations of Herzberg (1983) and Herzberg and O'Hara (1985) remain implausible.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号