首页 | 本学科首页   官方微博 | 高级检索  
     

全球地表覆盖制图研究新范式
作者姓名:宫鹏  张伟  俞乐  李丛丛  王杰  梁璐  李雪草  计璐艳  白玉琪
作者单位:清华大学 地球系统科学研究中心 地球系统数值模拟教育部重点实验室, 北京 100084,清华大学 地球系统科学研究中心 地球系统数值模拟教育部重点实验室, 北京 100084,清华大学 地球系统科学研究中心 地球系统数值模拟教育部重点实验室, 北京 100084,清华大学 地球系统科学研究中心 地球系统数值模拟教育部重点实验室, 北京 100084;Department of Environmental Science, Policy and Management, University of California, Berkeley CA 94720-3114, USA,中国科学院遥感与数字地球研究所 遥感科学国家重点实验室, 北京 100101,Arkansas Forest Resources Center, University of Arkansas Division of Agriculture, School of Forestry and Natural Resources, Universityof Arkansas at Monticello, 110 University Court, Monticello AR 71655, USA,清华大学 地球系统科学研究中心 地球系统数值模拟教育部重点实验室, 北京 100084,清华大学 地球系统科学研究中心 地球系统数值模拟教育部重点实验室, 北京 100084,清华大学 地球系统科学研究中心 地球系统数值模拟教育部重点实验室, 北京 100084
基金项目:中国气象公益项目(编号:201506023)
摘    要:
全球土地覆盖制图在过去的10年中取得重要进展,空间分辨率从300 m增加至30 m,分类详细程度也有所提高,从10余个一级类到包含29类的二级分类体系。然而,利用光学遥感数据在大空间范围制图方面仍有诸多挑战。本文主要介绍在农田、居住区、水体和湿地制图方面的挑战,讨论在使用多时相和多传感器遥感数据上的困难,这将是未来遥感应用的趋势。由于各种地表覆盖数据产品有自己定义的地表覆盖类型体系和处理流程,通过调和以及集成各种全球土地覆盖制图产品能够满足新的应用目的,并且可以最大程度地利用已有的土地覆盖数据。然而,未来全球土地覆盖制图需要能够按照新应用需求动态生成地表覆盖数据产品的能力。过去的研究表明有效地提高局部尺度制图的分类精度,更好的算法、更多种特征变量(新类型的数据或特征)以及更具代表性的训练样本都非常重要。我们却认为特征变量的使用更重要。本文提出了一个全球土地覆盖制图的新范式。在这个新范式中,地表覆盖类型的定义被分解为定性指标的类、定量指标的植被郁闭度和高度。非植被类型通过它们的光谱和纹理信息提取。复合考虑类、郁闭度和高度3种指标来定义和区别包含植被的地表覆盖类型。郁闭度和高度不能在分类算法中提取,需要借助其他直接测量或间接反演方法。新的范式还表明,一个普遍适用的训练样本集有效地提高了在非洲大陆尺度土地覆盖分类。为了确保更加容易地实现从传统的土地覆盖制图到全球土地覆盖制图新范式的转变,建议构建一体化的数据管理和分析系统。通过集成相关的观测数据、样本数据和分析算法,逐步建成全球土地覆盖制图在线系统,构建全球地表覆盖制图门户网站,为数据生产者、数据用户、专业研究人员、决策人员搭建合作互助的平台。

关 键 词:遥感  图像分类  类别定义  通用样本  一体化系统  在线制图
收稿时间:2016-05-19
修稿时间:2016-05-20
本文献已被 CNKI 等数据库收录!
点击此处可从《遥感学报》浏览原始摘要信息
点击此处可从《遥感学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号