首页 | 本学科首页   官方微博 | 高级检索  
     


High-order h-adaptive discontinuous Galerkin methods for ocean modelling
Authors:Paul-Emile Bernard  Nicolas Chevaugeon  Vincent Legat  Eric Deleersnijder  Jean-François Remacle
Affiliation:1.Center for Systems Engineering and Applied Mechanics (CESAME),Université Catholique de Louvain,Louvain-la-Neuve,Belgium;2.Institut d’Astronomie et de Géophysique G. Lema?tre,Université Catholique de Louvain,Louvain-la-Neuve,Belgium;3.Département d’Architecture, d’Urbanisme de Génie Civil et Environnemental,Université Catholique de Louvain,Louvain-la-Neuve,Belgium
Abstract:
In this paper, we present an h-adaptive discontinuous Galerkin formulation of the shallow water equations. For a discontinuous Galerkin scheme using polynomials up to order $$
p
$$, the spatial error of discretization of the method can be shown to be of the order of $$
h^{{p + 1}} 
$$, where $$h$$ is the mesh spacing. It can be shown by rigorous error analysis that the discontinuous Galerkin method discretization error can be related to the amplitude of the inter-element jumps. Therefore, we use the information contained in jumps to build error metrics and size field. Results are presented for ocean modelling problems. A first experiment shows that the theoretical convergence rate is reached with the discontinuous Galerkin high-order h-adaptive method applied to the Stommel wind-driven gyre. A second experiment shows the propagation of an anticyclonic eddy in the Gulf of Mexico. An erratum to this article can be found at
Keywords:Shallow water equations   H-adaptivity  Discontinuous Galerkin  A posteriori error estimation
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号