High-order h-adaptive discontinuous Galerkin methods for ocean modelling |
| |
Authors: | Paul-Emile Bernard Nicolas Chevaugeon Vincent Legat Eric Deleersnijder Jean-François Remacle |
| |
Affiliation: | 1.Center for Systems Engineering and Applied Mechanics (CESAME),Université Catholique de Louvain,Louvain-la-Neuve,Belgium;2.Institut d’Astronomie et de Géophysique G. Lema?tre,Université Catholique de Louvain,Louvain-la-Neuve,Belgium;3.Département d’Architecture, d’Urbanisme de Génie Civil et Environnemental,Université Catholique de Louvain,Louvain-la-Neuve,Belgium |
| |
Abstract: | In this paper, we present an h-adaptive discontinuous Galerkin formulation of the shallow water equations. For a discontinuous Galerkin scheme using polynomials up to order , the spatial error of discretization of the method can be shown to be of the order of , where is the mesh spacing. It can be shown by rigorous error analysis that the discontinuous Galerkin method discretization error can be related to the amplitude of the inter-element jumps. Therefore, we use the information contained in jumps to build error metrics and size field. Results are presented for ocean modelling problems. A first experiment shows that the theoretical convergence rate is reached with the discontinuous Galerkin high-order h-adaptive method applied to the Stommel wind-driven gyre. A second experiment shows the propagation of an anticyclonic eddy in the Gulf of Mexico. An erratum to this article can be found at |
| |
Keywords: | Shallow water equations H-adaptivity Discontinuous Galerkin A posteriori error estimation |
本文献已被 SpringerLink 等数据库收录! |
|