首页 | 本学科首页   官方微博 | 高级检索  
     检索      

我国自动与人工蒸发量观测资料的对比分析
引用本文:沈艳,任芝花,王颖,刘小宁.我国自动与人工蒸发量观测资料的对比分析[J].应用气象学报,2008,19(4):463-470.
作者姓名:沈艳  任芝花  王颖  刘小宁
作者单位:国家气象信息中心, 北京 100081
基金项目:国家级气象科学数据资源建设项目,中国气象局科技攻关项目
摘    要:截止到2005年,全国共有130个台站进行蒸发量自动与人工业务观测。该文利用2005年平行观测月数据,对资料的差异和相关性以及比对系数和影响因子进行了讨论,结果表明:月蒸发量差值不满足正态分布,近80%的数据为自动观测值大于人工观测值;在人工观测值较小时,对应的自动与人工相对差值较大,随着人工观测值的增加,差值有减小趋势;自动与人工观测数据之间存在很好的线性相关关系,相关系数为0.98,通过了0.01的显著性检验;比对系数年平均值在1.0~1.2之间,两大高值中心分别位于广西都安和湖南南县;比对系数月平均值的变化近似于二次型拟合曲线,1月最大,6,7月最小;在定性讨论特征站比对系数影响因子的基础上,进一步查明了影响月比对系数的气象因子有月平均相对湿度和月平均风速。

关 键 词:自动观测    人工观测    蒸发量    对比分析
收稿时间:2007-07-27
修稿时间:1/3/2008 12:00:00 AM

Comparative Analysis on Automatic and Manual Evaporation Measurements in China
Shen Yan,Ren Zhihu,Wang Ying and Liu Xiaoning.Comparative Analysis on Automatic and Manual Evaporation Measurements in China[J].Quarterly Journal of Applied Meteorology,2008,19(4):463-470.
Authors:Shen Yan  Ren Zhihu  Wang Ying and Liu Xiaoning
Institution:National Meteorological Information Center, Beijing 100081
Abstract:Automatic Observation System (AOS) has been set up since 2002 and Manual Observation System (MOS) will be substituted gradually. The results show that data quality will be influenced by the changes of either the measurement instrument or the manner. So it is necessary to conduct AOS-MOS parallel observations to determine the discrepancy and correlation. For evaporation observations the difference is great between the manual and automatic observation. In fact manual evaporation is measured once a day at about 20:00, the difference of the two days measurements is the daily evaporation quantity. However, automatic measurements have been implemented to record continuously water surface height which is then used to calculate the hourly and daily evaporation at a given station. It is wanted by many meteorologists to know how much is the difference and the relationship between the amount of evaporation measured by automatic and manual observations and what is the main causes of the difference.There are 130 stations by 2005 conducting evaporation parallel measurements in China. The monthly or annual value is often used for evaporation analysis. Moreover the contrast coefficient is defined as the ratio between automatic and manual value and often used, too. Based on the monthly, annual value and contrast coefficient, various analyses are carried out on evaporation difference arising from two observation systems. The results are as follows: Monthly difference doesn't satisfy normal distribution pattern. The average monthly evaporation a mount observed by automatic way is 5.74 mm (or 5.51%) more than that by manual way. The standard deviation of the difference is 9.02 mm. In the 1050 evaporation comparison observations, 3.33% of data observed in the two ways is identical, 19.71% of data observed by automatic way is smaller, 76.95% of data observed by automatic way is larger. Namely, about 80% of automatic monthly data is greater than corresponding manual ones. Super sensitive of automatic ultrasonic probe and the measurement time discrepancy may be the reasons. When manual amount is small, its associated difference between automatic and manual is large, especially in the Wanyuan station in Sichuan Province. The monthly evaporation by automatic observation is obviously a linear function of that by manual one with the correlation coefficient passing 0.01 significant level test. The annual contrast coefficient is within the range of 1.0 to 1.2, with two high value regions centered at Douan and Nanxian stations in Guangxi and Hunan provinces, respectively. The change of monthly contrast coefficient is similar to bi-parabolic distribution pattern with highest and lowest value in January and June or July, respectively. Meteorological factors influencing the monthly contrast coefficient include the monthly average relative humidity and monthly average wind speed. There is a trend to merge the different kind of data to compose high quality evaporation dataset which deserves further research in the future.
Keywords:automatic measurements  manual measurements  evaporation  comparative analysis
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《应用气象学报》浏览原始摘要信息
点击此处可从《应用气象学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号