首页 | 本学科首页   官方微博 | 高级检索  
     

基于神经网络的地质勘测反分析研究
引用本文:程涛,晏克勤,董必昌. 基于神经网络的地质勘测反分析研究[J]. 岩土力学, 2007, 28(4): 807-811
作者姓名:程涛  晏克勤  董必昌
作者单位:1. 黄石理工学院土建系,黄石 435003;2. 华中科技大学土木工程与力学学院,武汉 430074
摘    要:针对地质勘查中,土的力学参数的确定及土的分类这两类复杂问题,根据反问题理论的基本原理,提出了一种基于回归分析与RBF神经网络结合的新型智能方法,建立了从土的力学参数估计到模型分类的完整智能化分析系统。考虑到土的物理参数测定方法比较简单,且实测变异性小,而力学参数实测变异性大的特点,利用RBF神经网络的数值逼近的特性,建立了神经网络模型来逼近两者之间的函数关系,可以有效地反演力学参数。同时,利用RBF神经网络所具有的模式识别功能,为地质勘察中土层划分提供依据。通过对黄石地区岩土勘查资料的分析与预测表明,该方法简捷有效。

关 键 词:反问题  回归分析  RBF神经网络  力学参数估计  土层分类  
文章编号:1000-7598-(2007)04-0807-05
收稿时间:2005-05-18
修稿时间:2005-05-18

Research of back analysis of geological examination based on ANN
CHENG Tao,YAN Ke-qin,DONG Bi-chang. Research of back analysis of geological examination based on ANN[J]. Rock and Soil Mechanics, 2007, 28(4): 807-811
Authors:CHENG Tao  YAN Ke-qin  DONG Bi-chang
Affiliation:1. School of Civil engineering , Huangshi Institute of Technology, Huangshi Hubei 435003, China; 2. Institute of Civil engineering and Mechanics, Huazhong University of Science and Technology, Wuhan Hubei 430074, China
Abstract:Mechanical parameters estimation and classification of soils are very important in geologic examination. On the basis of inverse problem theory, a new intelligent method combining RBF neural network and regression analysis is proposed. Then an intellectualized simulation system of soil is established, consisting of two neural networks for mechanical parameter estimation and model recognition. In the system, considering variability of physical parameters is much smaller than mechanical parameters of soils, an artificial neural network model is established to approach the function relationship of the two kinds of parameters. It is effective to reflect mechanical parameters according physical parameters. The mechanical parameters will be input vectors applied to the other network. Then, the new neural network is established; it can offer a good approach to soil classification. This intellectualized simulation system is applied to analyzing geologic examination data in Huangshi; and the results show that the method is simple and effective.
Keywords:inverse problem   regression analysis   RBF neural network   mechanical parameters estimation   soil classification
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《岩土力学》浏览原始摘要信息
点击此处可从《岩土力学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号