首页 | 本学科首页   官方微博 | 高级检索  
     

面向海上目标搜索任务的多无人机协同航路优化
引用本文:姚 鹏,綦声波,解则晓. 面向海上目标搜索任务的多无人机协同航路优化[J]. 海洋科学, 2018, 42(1): 147-152
作者姓名:姚 鹏  綦声波  解则晓
作者单位:中国海洋大学工程学院
基金项目:山东省自然科学基金(ZR2018BF016); 中国博士后科学基金资助项目(2017M622278); 中央高校基本科研业务费(201713046)
摘    要:
提出了一种面向多无人机(unmanned aerial vehicle,UAV)协同搜索海上目标任务的航路优化方法。首先,分析多无人机协同航路优化问题的基本要素模型。然后,在对各UAV独立维护的目标概率图信息进行探测更新的基础上,采用状态预测一致性算法实现目标概率图信息的快速融合。最后,同时考虑局部搜索收益与未来搜索收益,采用分布式模型预测控制(distributed model predictive control,DMPC)方法优化各UAV的搜索航路。仿真结果表明,本研究提出的方法具有较高的搜索效率,可有效应用于海上目标的快速搜索任务,具有重要的应用价值。

关 键 词:无人机   搜索海上目标   航路优化   状态预测一致性算法   分布式模型预测控制
收稿时间:2017-10-11
修稿时间:2017-12-23

Cooperative path optimization of multi-UAVs when searching for maritime targets
YAO Peng,QI Sheng-bo and XIE Ze-xiao. Cooperative path optimization of multi-UAVs when searching for maritime targets[J]. Marine Sciences, 2018, 42(1): 147-152
Authors:YAO Peng  QI Sheng-bo  XIE Ze-xiao
Abstract:
In this paper, we solve the cooperative path optimization problem of multiple unmanned aerial vehicles (UAVs) when searching for maritime targets. First, we analyze the problem in detail by modeling its basic elements. Next, based on updated results from the detection process, we use the consensus theory with a state predictor to fuse the UAV target probability maps. Lastly, we use distributed model predictive control (DMPC) to optimize the UAV searching routes and simultaneously introduce local and future searching rewards. The simulation results indicate that the searching efficiency of our proposed method is higher than that achieved by current techniques.
Keywords:unmanned aerial vehicles (UAVs)   searching maritime target   path optimization   consensus theory with state predictor   distributed model predictive control (DMPC)
本文献已被 CNKI 等数据库收录!
点击此处可从《海洋科学》浏览原始摘要信息
点击此处可从《海洋科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号