首页 | 本学科首页   官方微博 | 高级检索  
     

基于GA-WNN的极化SAR海洋溢油检测方法研究
引用本文:陈伟民,丁亚雄,宋冬梅,王 斌,刘善伟,甄宗晋,张 婷,杨 敏. 基于GA-WNN的极化SAR海洋溢油检测方法研究[J]. 海洋科学, 2018, 42(1): 70-81
作者姓名:陈伟民  丁亚雄  宋冬梅  王 斌  刘善伟  甄宗晋  张 婷  杨 敏
作者单位:中国石油大学(华东)地球科学与技术学院;中国石油大学(华东)研究生院;海洋矿物资源实验室青岛海洋科学技术国家实验室;国家海洋局第一海洋研究所;国家海洋局北海分局
基金项目:国家重点研发计划(2017YFC1405600); 国家自然科学基金项目(41772350, 61371189, 41706208, 41701513)
摘    要:海洋溢油对海洋生态和人类生活带来严重的影响。由于合成孔径雷达(Synthetic Aperture Radar,SAR)具有全天时全天候的工作能力,在海洋溢油检测中发挥重要作用。目前,极化SAR是SAR探测技术的先进手段。本文利用6个极化特征进行溢油检测,通过对比分析这些特征对不同溢油的检测能力,得出单一极化特征在溢油检测中存在不足。通过J-M特征优选方法,提取出溢油检测识别度较高的特征影像,并利用遗传算法优化的小波神经网络(Genetic Algorithm-Wavelet Neural Network,GA-WNN)进行溢油检测。利用2套Radarsat-2全极化数据进行了方法验证,结果表明,该方法优于其他检测方法,溢油检测精度分别达到90.31%和95.42%。

关 键 词:Radarsat-2 SAR   极化特征   遗传算法   小波神经网络   海洋溢油
收稿时间:2017-10-11
修稿时间:2017-12-10

Ocean oil-spill detection using Pol-SAR data based on GAWNN
CHEN Wei-min,DING Ya-xiong,SONG Dong-mei,WANG Bin,LIU Shan-wei,ZHEN Zong-jin,ZHANG Ting and YANG Min. Ocean oil-spill detection using Pol-SAR data based on GAWNN[J]. Marine Sciences, 2018, 42(1): 70-81
Authors:CHEN Wei-min  DING Ya-xiong  SONG Dong-mei  WANG Bin  LIU Shan-wei  ZHEN Zong-jin  ZHANG Ting  YANG Min
Abstract:Ocean oil spills seriously threaten both the marine environment and human activity. Synthetic aperture radar (SAR) plays an important role in ocean oil-spill detection due to its all-weather and day-and-night capabilities. Polarimetric SAR (Pol-SAR) is an advanced SAR detection technology that makes full use of the backscattering characteristics between SAR channels and has demonstrated obvious advantages in ocean oil-spill detection. We conducted experiments to investigate six polarimetric characteristics, based on the fact that a single characteristic can be inadequate in oil-spill detection with respect to the analysis of different features. Using the J-M distance index method to perform feature selection, we then used the genetic-algorithm-optimized wavelet neural network (GA-WNN) to detect oil spills. The experimental results from two sets of Radarsat-2 data confirm the superior accuracy of the proposed method with regard to oil-spill detection, i.e., 90.31% and 95.42%, espectively.
Keywords:Radarsat-2 SAR   Polarimetric SAR Characteristic   Genetic Algorithm   Wavelet Neural Network   Ocean oil spill
本文献已被 CNKI 等数据库收录!
点击此处可从《海洋科学》浏览原始摘要信息
点击此处可从《海洋科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号