首页 | 本学科首页   官方微博 | 高级检索  
     


Element partitioning between magnesium silicate perovskite and ferropericlase: New insights into bulk lower-mantle geochemistry
Authors:Anne-Line Auzende   James Badro   Frederick J. Ryerson   Peter K. Weber   Stewart J. Fallon   Ahmed Addad   Julien Siebert  Guillaume Fiquet  
Affiliation:

aIPGP, IMPMC, Université Paris VI & Paris VII, CNRS, Department of Mineralogy, campus Boucicaut, 140 rue de Lourmel, 75015 Paris, France

bLLNL, Energy and Environment, Experimental geophysics, University of California, Livermore, CA 94550, United States

cLSPES, CNRS, Université des Sciences et Technologies de Lille, Cité scientifique, 59655 Villeuneuve d'Ascq, France

Abstract:In this study, we investigated iron–magnesium exchange and transition-metal trace-element partitioning between magnesium silicate perovskite (Mg,Fe)SiO3 and ferropericlase (Mg,Fe)O synthetised under lower-mantle conditions (up to 115 GPa and 2200 K) in a laser-heated diamond anvil cell. Recovered samples were thinned to electron transparency by focused ion beam and characterized by analytical transmission electron microscopy (ATEM) and nanometer-scale secondary ion mass spectroscopy (nanoSIMS). Iron concentrations in both phases were obtained from X-ray energy dispersive spectroscopy measurements and nanoSIMS. Our results are the first to show that recently reported spin-state and phase transitions in the lower mantle directly affect the evolution of Fe–Mg exchange between both phases. Mg-perovskite becomes increasingly iron-depleted above 70–80 GPa possibly due to the high spin–low spin transition of iron in ferropericlase. Conversely, the perovskite to post-perovskite transition is accompanied by a strong iron enrichment of the silicate phase, ferropericlase remaining in the Fe-rich phase though. Nanoparticles of metallic iron were observed in the perovskite-bearing runs, suggesting the disproportionation of ferrous iron oxide, but were not observed when the post-perovskite phase was present. Implications on the oxidation state of the Earth and core segregation will be discussed. Transition trace-element (Ni, Mn) concentrations (determined with the nanoSIMS) show similar trends and could thus be used to trace the origin of diamonds generated at depth. This study provides new results likely to improve the geochemical and geophysical models of the Earth's deep interiors.
Keywords:high pressure   iron partitioning   perovskite   ferropericlase   post-perovskite   laser-heated diamond anvil cell   ATEM   nanoSIMS
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号