Steady state hodographs in a baroclinic boundary layer |
| |
Authors: | MacKay Kenneth P. |
| |
Affiliation: | (1) San José State College, San José, Calif., USA |
| |
Abstract: | If the steady-state geostrophic wind vector varies exponentially with height in the planetary boundary layer, calculated hodographs of the 24-hour mean wind resemble the classic Ekman spiral distorted by thermal effects. For such an assumed distribution, Lettau's (1967) conclusion that the effects of thermal influence on the steady-state boundary-layer winds can be linearly superimposed on the effects of internal friction is justified.The minimum value of the cross-isobar angle of the surface wind for a given magnitude of the thermal wind vector occurs when that vector points about 345° to the right of the surface geostrophic wind vector and the maximum value occurs when it points at an azimuth of about 120° relative to the surface geostrophic wind vector. The range of values of the cross-isobar angle is almost directly proportional to the magnitude of the thermal wind vector.Hodographs resulting from the assumed variation of the geostrophic wind have approximately the same shape as 24-hour mean hodographs at two locations over the Great Plains.This work is part of a thesis submitted to the University of Wisconsin in partial fulfillment of the requirements for the Ph.D. Degree, written under the supervision of Professor H. Lettau, Department of Meteorology. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|