首页 | 本学科首页   官方微博 | 高级检索  
     

波谱仪调制功率谱估计算法性能的仿真研究
引用本文:刘驰,徐莹,孟齐辉,陈萍. 波谱仪调制功率谱估计算法性能的仿真研究[J]. 海洋学报, 2018, 40(5): 129-139. DOI: 10.3969/j.issn.0253-4193.2018.05.011
作者姓名:刘驰  徐莹  孟齐辉  陈萍
作者单位:1.华中科技大学 电子信息与通信学院, 湖北 武汉 430074;多谱信息处理技术重点实验室, 湖北 武汉 430074
基金项目:国家重点研发计划课题"波谱仪海洋信息提取技术"(2016YFC1401005);国家自然科学基金(41506207);国家863计划海洋技术领域重大项目课题"海洋动力环境微波遥感信息提取技术与应用"(2013AA09A505)。
摘    要:基于星载波谱仪海浪方向谱探测原理,仿真了不同海况、风速下的海浪波谱仪接收信号,并采用周期图法、Welch法、AR模型法以及最小方差法共4种不同的调制谱估计方法反演出海浪谱,比较各种调制谱估计方法的海浪方向谱反演性能。仿真结果表明:对于一定方位向下的一维海浪谱反演,不同调制谱估计方法反演海浪谱性能优劣没有绝对的顺序。对于二维海浪谱反演,在成长中海浪条件下周期图法反演性能最差,其他3种方法的反演性能没有绝对优劣顺序;对于成熟风浪,最小方差法在积分能量误差、有效波高误差两个指标上的反演性能最好,在主波波向、主波波长误差上,周期图法反演性能最差,其他3种方法没有绝对优劣顺序。在涌浪条件下,AR模型法反演性能优于其他3种方法。在不同海况下,随着波谱仪中心入射角的下降,反演性能会下降。基于这些仿真结果,本文推荐最小方差法作为充分成长海浪的海浪方向谱反演的调制谱估计方法,AR模型法作为涌浪海浪方向谱反演的调制谱估计方法。

关 键 词:星载波谱仪   海浪方向谱   调制谱估计方法
收稿时间:2017-02-17
修稿时间:2017-10-12

Simulation study on the performance of modulation power spectrum estimation algorithm for the spectrometer
Liu Chi,Xu Ying,Meng Qihui and Chen Ping. Simulation study on the performance of modulation power spectrum estimation algorithm for the spectrometer[J]. Acta Oceanologica Sinica (in Chinese), 2018, 40(5): 129-139. DOI: 10.3969/j.issn.0253-4193.2018.05.011
Authors:Liu Chi  Xu Ying  Meng Qihui  Chen Ping
Affiliation:1.School of Electronics and Information Engineering, Huazhong University of Science and Technology, Wuhan 430074, China;Science and Technology on Multi-spectral Information Processing Laboratory, Wuhan 430074, China2.National Satellite Ocean Application Service, Beijing 100081, China;Key Laboratory of Space Ocean Remote Sensing and Application, State Oceanic Administration, Beijing 100081, China
Abstract:Based on the principle of wave directional spectrum measurement of space borne spectrometer, simulations of signals received by spectrometer are carried out under different sea state conditions and wind speed in this paper. And four different modulation spectral estimation methods, such as periodogram method, Welch method, AR model method and minimum variance method, are used to retrieve the ocean wave spectrum. The inversion performances of various modulation spectral estimation methods mentioned above are compared. The simulation results show that for the one-dimensional wave spectrum inversion, there is no absolute superiority for the wave spectrum performance of the inversion by different modulation spectral estimation methods. And for the two-dimensional wave spectrum inversion, the periodogram method is the worst under the condition of developed ocean wave, and the inversion performances of the other three methods have no absolute superiority. For the mature wind-sea, the minimum variance method has the best inversion performance on the integral energy error and the significant wave height error, while the periodogram method has the worst inversion performance on the dominant wave direction error and the dominant wavelength error. In the swell condition, the AR model method has better performance than the other three methods. In the different sea state conditions, the inversion performance will decrease with the incidence angle. Based on these simulation results, the minimum variance method is proposed to retrieve ocean wave directional spectrum for the case that the sea surface is fully developed, and the AR model method is proposed to retrieve the ocean wave directional spectrum under swell condition.
Keywords:space borne spectrometer  ocean wave directional spectra  modulation spectral estimation method
本文献已被 CNKI 等数据库收录!
点击此处可从《海洋学报》浏览原始摘要信息
点击此处可从《海洋学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号