首页 | 本学科首页   官方微博 | 高级检索  
     

基于无人机影像密集匹配点云的传统村落地面点提取及DEM生成——以湘西德夯村为例
引用本文:付翔翔,邓运员,郑文武,周邵宁,周佳露. 基于无人机影像密集匹配点云的传统村落地面点提取及DEM生成——以湘西德夯村为例[J]. 测绘通报, 2021, 0(12): 1-5. DOI: 10.13474/j.cnki.11-2246.2021.362
作者姓名:付翔翔  邓运员  郑文武  周邵宁  周佳露
作者单位:1. 衡阳师范学院地理与旅游学院, 湖南 衡阳 421002;2. 传统村镇文化数字化保护与创意利用技术国家地方联合工程实验室, 湖南 衡阳 421002
基金项目:国家自然科学基金(41771150);教育部人文社会科学研究项目(16YJAZ006);湖南省社会科学基金重点项目(17ZDB051);湖南省教育厅优秀青年项目(19B078);湖南省研究生科研创新项目(CX20190982)
摘    要:目前,针对利用无人机技术在山地起伏大、山体植被密集区域,难以获取地面点及DEM等问题,本文提出了一种结合布料模拟算法和改进的局部最大值算法,利用树顶点、树高等植被信息,提取地面点,进而生成整个区域的DEM的方法。以中国传统村落德夯村为例,利用植被系数和高程信息将点云分割为植被密集区和非植被密集区两个部分。在非植被密集区,通过布料模拟算法和改进的局部最大值算法分别提取地面点和树顶点,计算平均树高;在植被密集区,通过该区域的树顶点推算得到植被密集区的近似地面点,最终将两部分的地面点云进行TIN插值得到该地区的DEM。试验结果表明,利用此方法生成的DEM均方根误差,在非植被密集区达0.037 m,植被密集区可达1.606 m,整体平均误差达1.492 m,总体精度较好,基本可以满足村落尺度空间分析的需求。

关 键 词:无人机  DEM  传统村落  布料模拟算法  局部最大值算法  
收稿时间:2021-06-07

Ground point extraction and DEM generation of traditional village landing surface points based on dense matching point cloud of UAV image: taking Dehang village in western Hunan as an example
FU Xiangxiang,DENG Yunyuan,ZHENG Wenwu,ZHOU Shaoning,ZHOU Jialu. Ground point extraction and DEM generation of traditional village landing surface points based on dense matching point cloud of UAV image: taking Dehang village in western Hunan as an example[J]. Bulletin of Surveying and Mapping, 2021, 0(12): 1-5. DOI: 10.13474/j.cnki.11-2246.2021.362
Authors:FU Xiangxiang  DENG Yunyuan  ZHENG Wenwu  ZHOU Shaoning  ZHOU Jialu
Affiliation:1. College of Geography and Tourism, Hengyang Normal University, Hengyang 421002, China;2. National-Local Joint Engineering Laboratory on Digital Preservation and Innovative Technologies for the Culture of Traditional Villages and Towns, Hengyang 421002, China
Abstract:For the problems of using UAV technology to obtain ground points and DEM in mountainous area with large fluctuation and dense vegetation, a method combining cloth simulation filtering algorithm and improved local maximum algorithm is proposed.This method uses vegetation information such as tree vertices and tree heights to extract ground points, and then generates DEM for the entire area.In this paper, Dehang village, a traditional village, is taken as an example. The point cloud is divided into two parts:dense vegetation area and non-dense vegetation area by vegetation coefficient and elevation information.In non-dense vegetation area, the cloth simulation filtering algorithm and improved local maximum algorithm are used to extract ground points,tree vertices and calculate the average tree height; in dense vegetation area, the approximate ground point of the dense vegetation area is calculated from the vertex of the tree in the area, and finally perform TIN interpolation on the two parts of the ground point cloud to get the DEM of the area. The experimental results show that the root mean square error of DEM generated by this method can reach 0.037 m in non-dense vegetation areas, 1.606 m in dense vegetation areas, and the overall average error can reach 1.492 m. The overall accuracy is good, which can basically meet the needs of spatial analysis at the village scale.
Keywords:UAV  DEM  traditional villiage  cloth simulation filtering algorithm  local maximum algorithm  
本文献已被 万方数据 等数据库收录!
点击此处可从《测绘通报》浏览原始摘要信息
点击此处可从《测绘通报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号