首页 | 本学科首页   官方微博 | 高级检索  
     

不同出游时间视角下游客流动网络结构及其分异特征——以西安市为例
引用本文:汪丽,曹小曙,李涛. 不同出游时间视角下游客流动网络结构及其分异特征——以西安市为例[J]. 地理科学, 2021, 41(8): 1437-1447. DOI: 10.13249/j.cnki.sgs.2021.08.015
作者姓名:汪丽  曹小曙  李涛
作者单位:1. 西安外国语大学旅游学院?人文地理研究所,陕西 西安 710128
2. 陕西师范大学西北国土资源研究中心,陕西 西安 710119
基金项目:国家自然科学基金重点项目(41831284)、国家社会科学基金重大项目(20&ZD157)、陕西省自然科学基础研究计划项目(2020JM-576)、西安市社会科学规划基金项目(WL128)、陕西省教育厅项目(18JK0649)资助
摘    要:以热门旅游城市西安市为研究区域,采集网络游记数据,综合运用社会网络分析和GIS空间分析方法,探讨不同出游时间下的游客流动网络结构及其分异特征,研究发现:① 不同的出游时间约束下,游客旅游出行行为表现出显著的时间异质性。② 基于游客流动的西安市旅游吸引物的节点结构具有显著的等级规模分异特征,随着出游时间的增加,旅游节点等级结构体系呈现出以高等级景点为枢纽的“强强”关联特征,高等级景点的游客集聚功能提升显著。③ 随着出游时间增加,西安市区旅游节点核心?边缘结构越明显,核心区的节点联系强度越大,区位邻近、知名度接近与交通便利是形成景点组团的关键因子。

关 键 词:游客景点流动结构  出游时间  大数据  西安市  网络分析  
收稿时间:2020-12-14

The Structure of Tourist Flow Network and Its Different Characteristics from the Perspective of Different Travel Time:A Case Study of Xi'an City
Wang Li,Cao Xiaoshu,Li Tao. The Structure of Tourist Flow Network and Its Different Characteristics from the Perspective of Different Travel Time:A Case Study of Xi'an City[J]. Scientia Geographica Sinica, 2021, 41(8): 1437-1447. DOI: 10.13249/j.cnki.sgs.2021.08.015
Authors:Wang Li  Cao Xiaoshu  Li Tao
Affiliation:1. Tourism College and Institute of Human Geography, Xi’an International Studies University, Xi’an 710128, Shaanxi, China
2. Northwest Land and Resource Research Center, Shaanxi Normal University, Xi’an 710119, Shaanxi, China
Abstract:Tourism flow research is the core topic of tourism geography. With the development of urban tourism and the transformation of functions, the micro-scale tourist flow has an increasingly significant impact on the internal spatial structure of cities. This study takes the popular tourist city of Xi’an as the research area, collects online travel notes data, uses social network analysis and GIS spatial analysis methods to explore the structure of the tourist flow network and its different characteristics under different travel times. The main conclusions are as follows: 1) Under different travel time constraints, tourists’ travel behaviors show significant temporal heterogeneity. 2) The node structure of Xi’an tourist attractions has significant hierarchical and scale differences. With the increase of travel time, the hierarchical structure system of tourist nodes presents the characteristics of “strong and strong” association with high-level attractions as the hub. The tourist gathering function of high-level attractions has improved significantly. 3) Location proximity, proximity to popularity and convenient transportation are the key factors for the formation of attractions group.
Keywords:tourist attractions flow structure  travel time  big data  Xi’an City  network analysis  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《地理科学》浏览原始摘要信息
点击此处可从《地理科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号