首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Acoustic wave attenuation in the gas hydrate-bearing sediments of Well GC955H,Gulf of Mexico
Authors:Jiliang Wang  Shiguo Wu  Jianhua Geng  Priyank Jaiswal
Institution:1.Institute of Deep Sea Science and Engineering,Chinese Academy of Sciences,Sanya,China;2.Laboratory for Marine Mineral Resources,Qingdao National Laboratory for Marine Science and Technology,Qingdao,China;3.State Laboratory of Marine Geology,Tongji University,Shanghai,China;4.Boone Pickens School of Geology,Oklahoma State University,Oklahoma,USA
Abstract:A better understanding of wave attenuation in hydrate-bearing sediments is necessary for the improved geophysical quantification of marine gas hydrates. Here we compare the attenuation behavior of hydrate-saturated vs water-saturated sediments at site GC955H, in the Gulf of Mexico, which was surveyed during the JIP Leg II expedition. We compute the P-wave attenuation of the gas hydrate bearing sediments using the median frequency shift method on the monopole waveforms. The results show that P-wave attenuation due to low saturation (<?0.4) in hydrate-filled fractures of fine-grained sediment is comparable to that of the water-filled fracture case. On the contrary, P-wave attenuation due to high saturation (>?0.4) in the hydrate-filled pores of coarse-grained sediments can be up to as much as three times more than that of the water-saturated case. The correlation analysis shows that the P-wave attenuation increases with the increasing gas hydrate saturation for the highly saturated gas hydrate-bearing sand interval while the correlation of the P-wave attenuation and hydrate saturation is weak for low saturated gas hydrate-bearing shale interval. The results show that P-wave attenuation is more likely to be used as a geophysical proxy for gas hydrate quantification of highly concentrated coarse-grained sediment rather than for that of fine-grained sediment. To examine the P-wave behavior in sand, we use the improved LCAM model, which accounts for physical factors such as grain boundary roughness and squirt flow to explain the observed differences in P-wave attenuation between hydrate and water-saturated coarse-grained sediment. Our results provide further geophysical evidences for P-wave behavior in the gas hydrate-bearing sediments in the field.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号