首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Non-hypersingular boundary integral equations for two-dimensional non-planar crack analysis
Authors:Taku Tada  Teruo Yamashita
Institution:Earthquake Research Institute, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113, Japan
Abstract:We derive a set of non-hypersingular boundary integral equations, both elastodynamic and elastostatic, for the analysis of arbitrarily shaped 2-D anti-plane and in-plane cracks located in an infinite homogeneous isotropic medium, rendered in a unified nomenclature for all cases. The hypersingularities that appear in the usual formulations for the dynamic cases, existent both at the source point and at the wavefront, are removed by way of a regularization technique based on integration by parts. The equations for the in-plane cases are presented in terms of a local Cartesian coordinate system, one of the axes of which is always held locally tangential to the crack trace. The expressions for the elastic field at any point on the model plane are also given.
Our formulations are shown to yield accurate numerical results, as long as appropriate stabilization measures are taken in the numerical scheme. The numerical applicability of our method to non-planar crack problems is illustrated by simulations of dynamic growth of a hackly crack which has small off-plane side-branches. The results imply that the branching of a crack brings about a significant decrease in the crack-tip stress concentration level and consequently may play an essential role in the arrest of earthquake rupturing.
Keywords:cracks  elastodynamics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号