首页 | 本学科首页   官方微博 | 高级检索  
     

从灾后机载激光点云自动检测损毁房屋的等高线簇分析方法
引用本文:何美章,朱庆,杜志强,张叶廷,胡翰,林月冠,齐华. 从灾后机载激光点云自动检测损毁房屋的等高线簇分析方法[J]. 测绘学报, 2015, 44(4): 407-413. DOI: 10.11947/j.AGCS.2015.20130785
作者姓名:何美章  朱庆  杜志强  张叶廷  胡翰  林月冠  齐华
作者单位:1. 武汉大学测绘遥感信息工程国家重点实验室, 湖北 武汉 430079;2. 高速铁路运营安全空间信息技术国家地方联合工程实验室, 四川 成都 611756;3. 西南交通大学地球科学与环境工程学院, 四川 成都 611756;4. 民政部国家减灾中心, 北京 100124
基金项目:国家863计划(2012AA121305);国家自然科学基金(41171311);国家高分辨率对地观测系统(民用部分)科研项目(03-Y30B06-9001-13/15);四川省科技计划项目(2014SZ0106)
摘    要:利用灾后机载激光扫描点云的地震损毁房屋检测方法主要针对平面屋顶房屋,从局部分析屋顶的平面特征,导致只能有效检测屋顶严重破碎的损毁房屋。为此本文提出了一种等高线簇相似分析的地震损毁房屋检测方法,充分挖掘房屋等高线簇蕴含的房屋表面形状丰富的二维和三维信息,利用等高线簇形状相似度的归一化信息熵从整体上综合描述损毁房屋的损毁特征,并利用最大熵模型自动检测损毁房屋。采用2010年4月El Mayor-Cucapah地震断裂带激光点云数据进行了试验,证明本文提出的方法能快速、准确、可靠地检测损毁房屋。

关 键 词:等高线簇  形状相似度  信息熵  损毁房屋检测  震后点云  
收稿时间:2013-12-20
修稿时间:2014-11-25

Contour Cluster Shape Analysis for Building Damage Detection from Post-earthquake Airborne LiDAR
HE Meizhang,ZHU Qing,DU Zhiqiang,ZHANG Yeting,HU Han,LIN Yueguan,QI Hua. Contour Cluster Shape Analysis for Building Damage Detection from Post-earthquake Airborne LiDAR[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(4): 407-413. DOI: 10.11947/j.AGCS.2015.20130785
Authors:HE Meizhang  ZHU Qing  DU Zhiqiang  ZHANG Yeting  HU Han  LIN Yueguan  QI Hua
Affiliation:1. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China;2. State-province Joint Engineering Laboratory of Spatial Information Technology of High-speed Rail Safety, Chengdu 611756, China;3. Faculty of Geosciences and Environmental Engineering, Southeast Jiaotong University, Chengdu 611756, China;4. National Disaster Reduction Center of China, MCA, Beijing 100124, China
Abstract:Detection of the damaged building is the obligatory step prior to evaluate earthquake casualty and economic losses.It’s very difficult to detect damaged buildings accurately based on the assumption that intact roofs appear in laser data as large planar segments whereas collapsed roofs are characterized by many small segments.This paper presents a contour cluster shape similarity analysis algorithm for reliable building damage detection from the post‐earthquake airborne LiDAR point cloud.First we evaluate the entropies of shape similarities between all the combinations of two contour lines within a building cluster,which quantitatively describe the shape diversity.Then the maximum entropy model is employed to divide all the clusters into intact and damaged classes.The tests on the LiDAR data at El Mayor‐Cucapah earthquake rupture prove the accuracy and reliability of the proposed method.
Keywords:contour cluster  shape similarity  entropy  damaged building detection  post-earthquake airborne LiDAR point cloud
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《测绘学报》浏览原始摘要信息
点击此处可从《测绘学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号