首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Relationship between magnetic properties and heavy metals of urban soils with different soil types and environmental settings: implications for magnetic mapping
Authors:Tao Yang  Qingsheng Liu  Qingli Zeng  Lungsang Chan
Institution:(1) Institute of Geophysics, China Earthquake Administration, Beijing, 100081, China;(2) Department of Geophysics, China University of Geosciences, Wuhan, 430074, China;(3) Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
Abstract:Two types of soil (fluvisols and anthrosols) were collected from different environmental settings (suburb and industrial area) in Wuhan, central China, aiming to examine the applicability of magnetic mapping for heavy metal pollution of urban soil in a large region. Magnetic measurements and chemical analysis indicated elevated magnetization and heavy metal concentrations of topsoils in the industrial area. Magnetic susceptibility (χ), anhysteretic remanent magnetization (ARM) and saturation isothermal remanent magnetization (SIRM) of fluvisols are much higher than those of anthrosols, but contrary for frequency-dependent susceptibility, indicating that soil magnetism strongly depends on the soil type/condition. Predominant magnetic carrier in topsoils in industrial area is pseudo-single-domain/multi-domain magnetite. Environmental scanning electron microscope/energy dispersive X-ray examination of the magnetic extracts from these topsoils revealed abundant spherical particles with diameters of 10–50 μm that are rich in iron-oxides, and could be attributed to the nearby industrial activities (e.g., steel work and power generation). Significant correlations were observed between magnetic concentration-related parameters (e.g., χ, ARM and SIRM) and concentrations of Cu, Pb, Zn, Hg and Tomlinson pollution load index. These results proposed that magnetic proxy mapping of soil pollution is an effective, fast and inexpensive tool for delineation of heavy metal pollution. However, interpretation of magnetic properties for such a purpose must be done on a site-specific basis, taking into account the possibilities of pedogenic enhancement/depletion under the specific soil conditions.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号