首页 | 本学科首页   官方微博 | 高级检索  
     


Reconstructing missing hourly real-time precipitation data using a novel intermittent sliding window period technique for automatic weather station data
Authors:Nagaraja Hema  Krishna Kant
Affiliation:1.Department of Computer Science and Engineering/Information Technology,Jaypee Institute of Information Technology,Noida,India
Abstract:
Precipitation is the most discontinuous atmospheric parameter because of its temporal and spatial variability. Precipitation observations at automatic weather stations (AWSs) show different patterns over different time periods. This paper aims to reconstruct missing data by finding the time periods when precipitation patterns are similar, with a method called the intermittent sliding window period (ISWP) technique—a novel approach to reconstructing the majority of non-continuous missing real-time precipitation data. The ISWP technique is applied to a 1-yr precipitation dataset (January 2015 to January 2016), with a temporal resolution of 1 h, collected at 11 AWSs run by the Indian Meteorological Department in the capital region of Delhi. The acquired dataset has missing precipitation data amounting to 13.66%, of which 90.6% are reconstructed successfully. Furthermore, some traditional estimation algorithms are applied to the reconstructed dataset to estimate the remaining missing values on an hourly basis. The results show that the interpolation of the reconstructed dataset using the ISWP technique exhibits high quality compared with interpolation of the raw dataset. By adopting the ISWP technique, the root-mean-square errors (RMSEs) in the estimation of missing rainfall data—based on the arithmetic mean, multiple linear regression, linear regression, and moving average methods—are reduced by 4.2%, 55.47%, 19.44%, and 9.64%, respectively. However, adopting the ISWP technique with the inverse distance weighted method increases the RMSE by 0.07%, due to the fact that the reconstructed data add a more diverse relation to its neighboring AWSs.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号