首页 | 本学科首页   官方微博 | 高级检索  
     

极地海冰-海洋参数遥感反演模型分布式共享研究
引用本文:何亚文,杨晓梅,杜云艳,孙晓宇. 极地海冰-海洋参数遥感反演模型分布式共享研究[J]. 地球信息科学学报, 2013, 15(2): 209-216. DOI: 10.3724/SP.J.1047.2013.00209
作者姓名:何亚文  杨晓梅  杜云艳  孙晓宇
作者单位:1. 中国石油大学(华东)地球科学与技术学院, 青岛266580;
2. 中国科学院地理科学与资源研究所资源与环境信息系统国家重点实验室, 北京100101;
3. 国家海洋局海洋环境预报中心, 北京100081
基金项目:海洋环境信息云计算与云服务体系框架应用研究(201105033)。
摘    要:本文以SOA开放式架构与OGC标准规范,提出了极地海冰-海洋参数遥感反演模型分布式共享服务体系。服务体系以"模型服务"为核心,探讨了模型服务接口和模型服务的互操作问题。为了简化极地海冰-海洋参数遥感反演模型的分布式共享过程,提出了极地海冰-海洋参数遥感反演模型共享服务平台的概念。共享服务平台处于模型与模型应用客户端之间,可以实现两者之间的数据转化和功能协同,以及实现模型算法与其他功能的分离,使模型开发者可以专注于模型算法的设计和实现。最后,以海冰密集度遥感反演模型和冰间湖识别模型为例,实现了极地海冰-海洋参数遥感反演模型分布式共享方法。

关 键 词:极地  模型服务  分布式  共享
收稿时间:2012-08-02;

Research on Distributed Sharing of Polar Sea Ice-Ocean Parameters Remote Sensing Inversion Models
HE Yawen,YANG Xiaomei,DU Yunyan,SUN Xiaoyu. Research on Distributed Sharing of Polar Sea Ice-Ocean Parameters Remote Sensing Inversion Models[J]. Geo-information Science, 2013, 15(2): 209-216. DOI: 10.3724/SP.J.1047.2013.00209
Authors:HE Yawen  YANG Xiaomei  DU Yunyan  SUN Xiaoyu
Affiliation:1. China University of Petroleum, Qingdao 266580, China;
2. State Key Laboratory of Resources and Environment Information System, IGSNRR, CAS, Beijing 100101, China;
3. National Marine Environment Forecasting CenterBeijing 100081, China
Abstract:Traditional single computing environment cannot meet the needs of geographic model sharing, because of its limitations on storage, computing resources and program transfer. Distributed geospatial model sharing could avoid those limitations, so distributed sharing architecture of remote sensing inversion models for polar sea ice-ocean parameters is brought forward based on SOA construction and OGC specifications, which can provide the overall framework and the top-level guidance for studying the key technologies of polar sea ice-ocean parameters remote sensing inversion model service composition and constructing specific composition applications. The distributed sharing architecture focuses on the model services. Detail discussion is carried out on model service interface and interoperation problems related to model services. The polar sea ice-ocean param-eters remote sensing inversion model sharing services platform is designed and developed to help implementing polar sea ice-ocean parameters remote sensing inversion model sharing. In this paper, we analyzed the design guidelines of polar sea ice-ocean parameters remote sensing inversion model sharing service platform, and further studied the key technologies involved in the polar sea ice-ocean parameters remote sensing inversion model sharing service platform. The sharing platform is the connector of model and the clients, and can realize the data conversion and function collaborative. With the help of the sharing platform, model developer could only focus on model algorithm, and the sharing platform will take care of building model service, and interacting with model clients. Several models are adapted, including sea ice concentration remote sensing inversion model and polynya morphologic remote sensing inversion model, to demonstrate the advantages of distributed sharing architecture of polar sea ice-ocean parameters remote sensing inversion models.
Keywords:polar  model services  distributing  sharing
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《地球信息科学学报》浏览原始摘要信息
点击此处可从《地球信息科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号