首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Numerical model for the generation of the ensemble of lithospheric plates and their penetration through the 660-km boundary
Authors:V P Trubitsyn  A P Trubitsyn
Institution:1. Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, ul. Bol’shaya Gruzinskaya 10, Moscow, 123995, Russia
2. Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, ul. Profsoyuznaya 84/32, Moscow, 117997, Russia
Abstract:In the kinematic theory of lithospheric plate tectonics, the position and parameters of the plates are predetermined in the initial and boundary conditions. However, in the self-consistent dynamical theory, the properties of the oceanic plates (just as the structure of the mantle convection) should automatically result from the solution of differential equations for energy, mass, and momentum transfer in viscous fluid. Here, the viscosity of the mantle material as a function of temperature, pressure, shear stress, and chemical composition should be taken from the data of laboratory experiments. The aim of this study is to reproduce the generation of the ensemble of the lithospheric plates and to trace their behavior inside the mantle by numerically solving the convection equations with minimum a priori data. The models demonstrate how the rigid lithosphere can break up into the separate plates that dive into the mantle, how the sizes and the number of the plates change during the evolution of the convection, and how the ridges and subduction zones may migrate in this case. The models also demonstrate how the plates may bend and break up when passing the depth boundary of 660 km and how the plates and plumes may affect the structure of the convection. In contrast to the models of convection without lithospheric plates or regional models, the structure of the mantle flows is for the first time calculated in the entire mantle with quite a few plates. This model shows that the mantle material is transported to the mid-oceanic ridges by asthenospheric flows induced by the subducting plates rather than by the main vertical ascending flows rising from the lower mantle.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号