Abstract: | ![]() A theoretically-based erosion criterion is developed for gravel-bed rivers which incorporates the effect of both grain geometry and turbulent velocity fluctuations. It is derived from a balance of instantaneous drag, lift, and gravity forces operating on individual grains and is calculated for spherical grains arranged in three distinct geometries. To accommodate the temporal variation in bed shear stress, the model includes a stochastic element based on the characteristics of turbulence derived from the flume evidence of McQuivey (1973a, b). In terms of the Shields parameter, results show reasonable agreement with the range of observations quoted from the field and with the experimental data of Fenton and Abbott (1977). Finally, the argument is generalized to cover applications in the wider context of field conditions including a range of grain sizes and flow conditions. |