首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度学习和雷达观测的华南短临预报精度评估
引用本文:梁振清,陈生. 基于深度学习和雷达观测的华南短临预报精度评估[J]. 气象研究与应用, 2020, 0(1): 41-47
作者姓名:梁振清  陈生
作者单位:南宁师范大学地理科学与规划学院;中山大学大气科学学院;广东省气候变化与自然灾害研究重点实验室
基金项目:国家自然科学基金项目(41875182);广州科技局计划项目(201904010162);中山大学“百人计划”项目(74110-18841203);广西自然科学基金项目(2018JJA150110);南宁师范大学-高校高层次人才和教师素质提升(6020303890216);广西自然科学基金项目(2018GXNSFAA050130)。
摘    要:利用最新的深度学习算法,即卷积长短期记忆(Convolution Long-Short Term Memory)神经网络,构建基于深度学习的人工智能短临预报系统,以广州地区2019年3-5月雷达观测的数据为输入进行训练,然后进行短期1h内的降水预报.利用常用的统计评分指标(探测率POD、误报率FAR、临界成功指数CSI...

关 键 词:深度学习  神经网络  降水短临预报  精度评估

Accuracy evaluation of nowcasting in South China based on deep learning and radar observation
Liang Zhenqing,Chen Sheng. Accuracy evaluation of nowcasting in South China based on deep learning and radar observation[J]. Journal of Guangxi Meteorology, 2020, 0(1): 41-47
Authors:Liang Zhenqing  Chen Sheng
Affiliation:(School of Geography and Planning,Nanning Normal University,Nanning 53001;School of Atmospheric Sciences,Sun Yat-sen University,Zhuhai Guangdong 519082;Guangdong Province Key Laboratory of Climate Change and Natural Disasters,Guangzhou 510275)
Abstract:The latest deep learning algorithm, namely convolution long-term short-term memory neural network, is used to construct an artificial intelligence short-time prediction forecast system. The radar observation data from March to May 2019 in Guangzhou is used as input for training, and then the short-time precipitation forecast within 1 hour is carried out. The commonly used statistical scoring indicators(POD, FAR, CSI, CC)were used to test the model. The results show that: 1) the CC between the prediction results and the actual observation are kept above 0.6;2) All the POD are above 80%;3) the CSI are basically kept at 60% when the precipitation intensity is 10 mm/h;4) All FAR are less than 40%.
Keywords:deep learning  neural network  short-time precipitation forecast  accuracy assessment
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号