首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Contrasting Archean and Proterozoic lithospheric mantle: isotopic evidence from the Shonkin Sag sill (Montana)
Authors:Greenough  John D  Kyser  T Kurtis
Institution:(1) Department of Earth and Environmental Sciences, Okanagan University College, Kelowna, BC V1V 1V7, Canada;(2) Department of Geological Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
Abstract:207Pb/204Pb versus 206Pb/204Pb model ages using Shonkin Sag data and published analyses for magmas of the Cenozoic Wyoming-Montana alkaline province (WYMAP) provide evidence of an Archean age for the subcontinental lithospheric mantle (SLM) associated with the Wyoming craton. The SLM imprint on magmas is expressed as Ba, Ta, Nb and Ti "anomalies" which correlate with radiogenic isotopic data, and it resembles a subduction imprint on Cenozoic south-western USA basalts (SWUSAB). However the latter give Proterozoic Pb isotope model ages. Although the Archean and Proterozic model ages may represent mixing lines, the fact that they resemble the ages for continental crust cut by WYMAP and SWUSAB respectively indicates that the age of the underlying SLM helped control the "isochron" slopes and inferred "ages". Lower 143Nd/144Nd and 206Pb/204Pb but comparable 87Sr/86Sr for WYMAP suggest that SLM associated with Archean cratons has lower Sm/Nd, U/Pb and Rb/Sr ratios than SLM associated with SWUSAB Proterozic terranes, regardless of when the subduction imprint or imprints developed. WYMAP magmas have high Pb/Zr ratios indicating that Archean SLM, like Archean continental crust, is enriched in Pb compared to Proterozoic SLM. If the enrichment was Archean, it implies that higher Archean heat flow enhanced Pb transfer from the subducting slab to overlying lithospheric mantle and crust. A subducted sediment imprint on the SLM is also consistent with high i18O values for the Shonkin Sag. Low TiO2 in WYMAP may reflect a residual mantle TiO2 phase. If so, the Nb "missing" from crustal and oceanic mantle reservoirs may reside in rutile of Archean SLM. Isotopic similarities between WYMAP and EM1 oceanic island basalts may reflect the presence of delaminated, Archean SLM in the oceanic mantle, although low Pb/Zr ratios and a lack of Ti, Nb and Ta anomalies in oceanic island basalts deserve further investigation.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号