首页 | 本学科首页   官方微博 | 高级检索  
     

基于DEnKF方法的考虑次网格变异性的MODIS雪盖同化
引用本文:许剑辉, 舒红. 基于DEnKF方法的考虑次网格变异性的MODIS雪盖同化[J]. 武汉大学学报 ( 信息科学版), 2016, 41(2): 156-162. DOI: 10.13203/j.whugis20140039
作者姓名:许剑辉  舒红
作者单位:1.武汉大学测绘遥感信息工程国家重点实验室, 湖北武汉, 430079;;2.广州地理研究所广东省地理空间信息技术与应用公共实验室, 广东广州, 510070
基金项目:湖北省自然科学基金(2014CFB725);国家自然科学基金(41171313);广州地理研究所优秀青-创新人才基金。
摘    要:
基于通用陆面模型(CoLM)和确定性集合卡尔曼滤波算法发展了一个考虑模型次网格变异性的MODIS雪盖同化方案,提高雪深模拟的估计精度。利用北疆阿勒泰地区5个气象站点2007年11月至2008年4月逐日雪深观测数据对同化结果进行了验证。结果表明,该同化方案不需要对MODIS雪盖观测数据进行扰动,能明显提高雪深模拟的精度。另外,雪深同化结果与地面观测雪深具有一致的时间变化趋势,能准确地反映积雪深度在各个不同时段的变化特性。

关 键 词:雪深  通用陆面模型(CoLM)  MODIS雪盖  确定性集合卡尔曼滤波  次网格变异性
收稿时间:2014-09-29

DEnKF-based Assimilation of MODIS-Derived Snow Cover Products into Common Land Model Considering the Model Sub-grid Heterogeneity
XU Jianhui, SHU Hong. DEnKF-based Assimilation of MODIS-Derived Snow Cover Products into Common Land Model Considering the Model Sub-grid Heterogeneity[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2): 156-162. DOI: 10.13203/j.whugis20140039
Authors:XU Jianhui  SHU Hong
Affiliation:1.State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China;;2.Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangzhou Institute of Geography, Guangzhou 510070, China
Abstract:
The use of perturbed observations in the traditional ensemble Kalman filter (EnKF) introduces uncertainties and results in sub-optimal model state estimates. A modified EnKF method, the deterministic ensemble Kalman filter (DEnKF), can approach the analysis error covariance matrix without perturbing observations. As a forecast operator, the common land model (CoLM) is advantageous for sub-grid heterogeneity analysis. To reduce some errors stemming from the uncertainty in snow data assimilation, a new DEnKF-based snow data assimilation method is proposed for considering model sub-grid heterogeneity. The proposed method was used to assimilate the MODIS-derived snow cover products into CoLM for improving simulated snow depth. The daily snow depth of five meteorological stations from November 2007 to April 2008 in Altay is used for validation. The experimental results show that the DEnKF-based assimilation method can improve the simulated snow depth effectively. The improved snow depth does not only show the consistent time trends with in-situ snow depth but also reflects time-varying characteristics for different seasons.
Keywords:snow depth  common land model  MODIS snow cover  deterministic ensemble Kalman filter  sub-grid heterogeneity
本文献已被 CNKI 等数据库收录!
点击此处可从《武汉大学学报(信息科学版)》浏览原始摘要信息
点击此处可从《武汉大学学报(信息科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号