首页 | 本学科首页   官方微博 | 高级检索  
     


Galactic Sun's motion in the cold dark matter,MOdified Newtonian Dynamics and modified gravity scenarios
Authors:L. Iorio
Abstract:We numerically integrate the equations of motion of the Sun in Galactocentric Cartesian rectangular coordinates for –4.5 Gyr ≤ t ≤ 0 in Newtonian mechanics with two different models for the Cold Dark Matter (CDM) halo, in MOdified Newtonian Dynamics (MOND) and in MOdified Gravity (MOG) without resorting to CDM. The initial conditions used come from the latest kinematical determination of the 3D Sun's motion in the Milky Way (MW) by assuming for the rotation speed of the Local Standard of Rest (LSR) the recent value Θ0 = 268 km s–1 and the IAU recommended value Θ0 = 220 km s–1; the Sun is assumed located at 8.5 kpc from the Galactic Center (GC). For Θ0 = 268 km s–1 the birth of the Sun, 4.5 Gyr ago, would have occurred at large Galactocentric distances (12–27 kpc depending on the model used), while for Θ0 = 220 km s–1 it would have occurred at about 8.8–9.3 kpc for almost all the models used. The integrated trajectories are far from being circular, especially for Θ0 = 268 km s–1, and differ each other with the CDM models yielding the widest spatial extensions for the Sun's orbital path (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
Keywords:celestial mechanics, stellar dynamics  cosmology: dark matter  Galaxy: solar neighborhood  gravitation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号