首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Heavy rainfall caused by interactions between monsoon depression and middle-latitude systems in Australia: a case study
Authors:Qi Kong  Sixiong Zhao
Institution:1. Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China
2. Graduate School, Chinese Academy of Sciences, 100049, Beijing, China
3. National Meteorological Center, China Meteorological Administration, 100081, Beijing, China
Abstract:The heavy rainfall caused by interactions between the monsoon depression and the middle-latitude systems in Australia has been investigated in this paper. For a better understanding of the Australian monsoon depression (AMD) and its synoptic-scale interaction with the middle-latitude systems, some key meteorological parameters have been calculated, including the vorticity budget, moisture budget, temperature advection, frontogenesis function and potential vorticity. The results show that interaction between the lower and mid-latitude systems does exist leading to the merging of the extratropical low with frontal systems and the AMD, meanwhile both the low-level cold air from the mid-latitude and the warm moist air that was lifted by the front were very favorable for the formation and the intensification of heavy rainfall, which was quite different from the rainfall caused by the AMD alone. Second, the obvious temperature advection and gradient were detected, so the baroclinicity was favorable to the intensification of the front, as well as to the development of the upper-level jet. Next, isentropic analysis revealed that the south-west cold-flow sank and met the warm flow coming from the northern part of Australia, thereby forming the obvious baroclinic zone in the lower troposphere. A high-PV anomaly area located in the upper level of the troposphere, which overlaid the low-level frontogenesis zone, also existed. The upper-level PV maximum extended downwards forming a vertical PV column when the extratropical low intensified. Furthermore, the AMD is a warm-cored vortex located in middle and upper troposphere with a deep and thick moisture layer, and there were some differences in the vorticity and moisture budgets of the two different stages. Finally, based on the above-mentioned analysis, a conceptual model describing the interactions between the lower and middle-latitude systems in the southern hemisphere was proposed.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号