首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Biomarker distributions in asphaltenes and kerogens analysed by flash pyrolysis-gas chromatography-mass spectrometry
Authors:Ger Van Graas
Abstract:Biomarker distributions in a suite of asphaltenes and kerogens have been analysed by flash pyrolysis directly coupled to a GCMS system. Attention has been focussed on biomarkers of the sterane and triterpane types. The sample suite under investigation consists of sediments with different kerogen types and some crude oils. Biomarker distributions in the pyrolysates have been compared with the “free” biomarkers in the corresponding saturated hydrocarbon fractions.The analyses show significant differences between the distributions of the free biomarkers and those in the pyrolysates. The latter have lower amounts of steranes while diasteranes are absent or present at low concentrations only. In the triterpane traces a shift of maximum intensity from C30 (free compounds) to C27/C29 is observed. Furthermore, the pyrolysates contain a set of triterpenes (not present among the free compounds), and there is a selective loss of “non-regular” triterpanes that are present in the saturated hydrocarbon fractions. The observed differences between pyrolysates and free hydrocarbons can be explained partly by the processes occurring during pyrolysis such as bond rupture and subsequent stabilisation of primary pyrolysis products. To a certain extent these differences also show that maturation processes occurring in sediments have effects on free biomarker molecules different from those on molecules that are enclosed in a macromolecular matrix (kerogen or asphaltenes).Differences between biomarker distributions of asphaltene and kerogen pyrolysates are relatively small. A comparison with the pyrolysates from extracted whole sediments suggests that these differences are mainly caused by interactions between the organic material and the mineral matrix during pyrolysis.Oil asphaltenes behave differently from sediment asphaltenes as their pyrolysates are more similar to the corresponding saturated hydrocarbon fractions, i.e. the differences described above are observed to a much smaller extent. This different behaviour appears to be the result of coprecipitation of a part of the maltene fraction with the oil asphaltenes.
Keywords:biological markers  flash pyrolysis  GC-MS  asphaltenes  kerogen  oil  source rock
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号