摘 要: | 在协方差矩阵、协因数阵、权阵等概念的基础上,引入了Fisher信息矩阵(简称信息矩阵),介绍了信息矩阵的一些重要性质,强调了总体信息矩阵与样本信息矩阵两种概念的区别;推导了多元正态分布情况下的信息矩阵,揭示了总体/样本信息矩阵与总体/样本协方差矩阵以及协因数阵/权阵的关系,指出权阵为归一化信息矩阵;在信息矩阵的基础上引入信息向量的概念,推导了信息域间接平差方法,该方法对信息矩阵与信息向量进行估计,在结果层面,该方法与估计原参数向量与协方差矩阵的普通间接平差方法等价,但形式更简单、结构更明确,为理解间接平差提供了一种新的视角,而且新方法在模型不可解场合、序贯/递归平差的初始化方面等具有特殊优势;给出了用于动态状态空间模型滤波的信息域动态平差算法,即为与Kalman滤波算法等价的信息滤波算法。
|