首页 | 本学科首页   官方微博 | 高级检索  
     


Surface and deep water response to rapid climate changes at the Western Iberian Margin
Authors:Joachim Sch  nfeld, Rainer Zahn,Lú  cia de Abreu
Affiliation:a Geomar Research Center for Marine Geosciences, Wischhofstr. 1-3, D-24148, Kiel, Germany;b Department of Earth Sciences, Cardiff University, P.O. Box 914, Cardiff CF10 3YE, UK;c Godwin Laboratory, University of Cambridge, Pembroke Street, Cambridge CB2 3SA, UK
Abstract:Rapid climate changes at the onset of the last deglaciation and during Heinrich Event H4 were studied in detail at IMAGES cores MD95-2039 and MD95-2040 from the Western Iberian margin. A major reorganisation of surface water hydrography, benthic foraminiferal community structure, and deepwater isotopic composition commenced already 540 years before the Last Isotopic Maximum (LIM) at 17.43 cal. ka and within 670 years affected all environments. Changes were initiated by meltwater spill in the Nordic Seas and northern North Atlantic that commenced 100 years before concomitant changes were felt off western Iberia. Benthic foraminiferal associations record the drawdown of deepwater oxygenation during meltwater and subsequent Heinrich Events H1 and H4 with a bloom of dysoxic species. At a water depth of 3380 m, benthic oxygen isotopes depict the influence of brines from sea ice formation during ice-rafting pulses and meltwater spill. The brines conceivably were a source of ventilation and provided oxygen to the deeper water masses. Some if not most of the lower deep water came from the South Atlantic. Benthic foraminiferal assemblages display a multi-centennial, approximately 300-year periodicity of oxygen supply at 2470-m water depth. This pattern suggests a probable influence of atmospheric oscillations on the thermohaline convection with frequencies similar to Holocene climate variations. For Heinrich Events H1 and H4, response times of surface water properties off western Iberia to meltwater injection to the Nordic Seas were extremely short, in the range of a few decades only. The ensuing reduction of deepwater ventilation commenced within 500–600 years after the first onset of meltwater spill. These fast temporal responses lend credence to numerical simulations that indicate ocean–climate responses on similar and even faster time scales.
Keywords:Heinrich events   Foraminifera   Thermohaline circulation   Ocean currents
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号