Numerical analysis of cross-section ovalization in the deep-sea pipeline lateral buckling process |
| |
Authors: | Yang Cao |
| |
Affiliation: | College of Harbor, Coastal and Offshore Engineering, Hohai University, Nanjing, China |
| |
Abstract: | AbstractThe deep-water pipeline is the main means of transportation in offshore oil and gas development engineering. The deep-water pipeline may incur lateral global buckling due to the high temperature and pressure that are applied on the pipeline to ensure the contents’ liquidity. With the increasing operating water depth, a higher temperature and pressure are applied to the pipeline, causing large lateral deformation and a large bending moment. Due to the inhomogeneous distribution of the bending moment on the cross-section, different points on the cross-section will deform differently. This kind of deformation causes the cross-section to turn into an oval ring. The cross-section ovalization caused by global buckling was rarely analyzed in former engineering practice since the load is relatively low. With the increase in operation water depth and operation load, the ovality caused by global buckling is noticeable. This article analyzed cross-section ovalization caused by pipeline lateral global buckling with a numerical simulation method. The pipelines with different initial cross-section shapes were simulated, and the influence of several impact factors, including load, pipeline and soil factors on the ovality of the cross-section, were analyzed. The results show that the initial cross-section shape type has little effect on the pipeline ovalization pattern. The initial ovality of the pipeline with an oval ring cross-section shape has little influence on the residual ovality. Among all the factors analyzed in this paper, the pressure difference is the primary factor that should be considered in a pipeline ovalization check. |
| |
Keywords: | Deep-sea pipeline lateral global buckling ovality numerical investigation ABAQUS |
|
|