首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   134篇
  免费   6篇
  国内免费   25篇
测绘学   22篇
大气科学   7篇
地球物理   26篇
地质学   18篇
海洋学   78篇
天文学   6篇
综合类   5篇
自然地理   3篇
  2021年   1篇
  2020年   5篇
  2019年   6篇
  2018年   3篇
  2017年   7篇
  2016年   4篇
  2015年   7篇
  2014年   7篇
  2013年   9篇
  2012年   9篇
  2011年   5篇
  2010年   6篇
  2009年   11篇
  2008年   8篇
  2007年   12篇
  2006年   11篇
  2005年   3篇
  2004年   4篇
  2003年   14篇
  2002年   6篇
  2001年   6篇
  2000年   4篇
  1999年   1篇
  1998年   5篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1989年   1篇
  1980年   1篇
排序方式: 共有165条查询结果,搜索用时 234 毫秒
1.
Stokes漂流对海洋上混合层中的流场和温度场结构具有不可忽视的作用。本文基于WAVEWATCHⅢ海浪模式模拟的海浪要素计算得到Stokes漂流,将其引入SBPOM模式的动量方程中,从体积输运的角度研究Stokes漂流对全球海表面温度的影响。分析发现Stokes漂流与Stokes输运在全球呈现高纬度强于中低纬度的带状分布特征,且这种流动与输运对全球海表面温度具有降温作用,该降温作用的分布与全球Stokes输运强度相对应,高纬降温作用大于中低纬度,特别是南极绕极流海域平均降温明显大于其余海域,最大降温可达1.5℃,且全球月平均降温超过0.1℃。  相似文献   
2.
A numerical scheme is developed in order to simulate fluid flow in three dimensional (3‐D) microstructures. The governing equations for steady incompressible flow are solved using the semi‐implicit method for pressure‐linked equations (SIMPLE) finite difference scheme within a non‐staggered grid system that represents the 3‐D microstructure. This system allows solving the governing equations using only one computational cell. The numerical scheme is verified through simulating fluid flow in idealized 3‐D microstructures with known closed form solutions for permeability. The numerical factors affecting the solution in terms of convergence and accuracy are also discussed. These factors include the resolution of the analysed microstructure and the truncation criterion. Fluid flow in 2‐D X‐ray computed tomography (CT) images of real porous media microstructure is also simulated using this numerical model. These real microstructures include field cores of asphalt mixes, laboratory linear kneading compactor (LKC) specimens, and laboratory Superpave gyratory compactor (SGC) specimens. The numerical results for the permeability of the real microstructures are compared with the results from closed form solutions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
3.
A coupled continuum‐discrete hydromechanical model was employed to analyse the liquefaction of a saturated loose deposit of cohesionless particles when subjected to a dynamic base excitation. The pore fluid flow was idealized using averaged Navier–Stokes equations and the discrete element method was employed to model the solid phase particles. A well established semi‐empirical relationship was utilized to quantify the fluid–particle interactions. The conducted simulations revealed a number of salient micro‐mechanical mechanisms and response patterns associated with the deposit liquefaction. Space and time variation of porosity was a major factor which affected the coupled response of the solid and fluid phases. Pore fluid flow was within Darcy's regime. The predicted response exhibited macroscopic patterns consistent with experimental results and case histories of the liquefaction of granular soil deposits. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
4.
5.
The spectral properties of nonlinear drag forces of random waves on vertical circular cylinders are analyzed in this paper by means of nonlinear spectral analysis. The analysis provides basic parameters for estimation of the characteristic drag forces. Numerical computation is also performed for the investigation of the effects of nonlinearity of the drag forces.The results indicate that the wave drag forces calculated by linear wave theory are larger than those calculated by the third order Stokes wave theory for given waves. The difference between them increases with wave height. The wave drag forces calculated by use of hnear approximation are about 5% smaller than their actual values when measured in the peak values of spectral densities. This will result in a safety problem for the design of offshore structures. Therefore, the nonlinear effect of wave drag forces should be taken into comidemtion in design and application of important offshore structures.  相似文献   
6.
应用理论推导及数值计算方法,对Stokes随机波的谱特性进行了分析。首先将波面方程,海水质点水平速度用一阶波面分量的非线性组合表示,应用平稳随机高阶短的降阶计算法则,得到了波面方程及海水质点水平速度与一阶波面分量的自相关函数之间的关系,从而确定了Stokes随机波浪的波浪谱密度及海水质点水平速度和加速度谱密度,进而求得有关波浪要素的均方根值。文章还应有数值计算方法,分析了波浪基本参数对均方根值的影响。  相似文献   
7.
A finite-difference scheme and a modified marker-and-cell (MAC) algorithm have been developed to investigate the interactions of fully nonlinear waves with two- or three-dimensional structures of arbitrary shape. The Navier–Stokes (NS) and continuity equations are solved in the computational domain and the boundary values are updated at each time step by the finite-difference time-marching scheme in the framework of a rectangular coordinate system. The fully nonlinear kinematic free-surface condition is implemented by the marker-density function (MDF) technique developed for two fluid layers.To demonstrate the capability and accuracy of the present method, the numerical simulation of backstep flows with free-surface, and the numerical tests of the MDF technique with limit functions are conducted. The 3D program was then applied to nonlinear wave interactions with conical gravity platforms of circular and octagonal cross-sections. The numerical prediction of maximum wave run-up on arctic structures is compared with the prediction of the Shore Protection Manual (SPM) method and those of linear and second-order diffraction analyses based on potential theory and boundary element method (BEM). Through this comparison, the effects of non-linearity and viscosity on wave loading and run-up are discussed.  相似文献   
8.
The stochastic properties of the drag force maxima on a circular cylinder subjected to nonlinear random waves are investigated. Unseparated laminar high Reynolds number flow is considered. A simplified approach based on second order Stokes waves is presented, including the sum-frequency effect only. It is demonstrated how a drag force formula valid for regular linear waves can be used to find the cumulative distribution function of individual drag force maxima for nonlinear irregular waves. Here the [Wang, 1968] drag force coefficient is used.  相似文献   
9.
Hydrocyclones are widely used in the mining and chemical industries. An attempt has been made in this study, to develop a CFD (computational fluid dynamics) model, which is capable of predicting the flow patterns inside the hydrocyclone, including accurate prediction of flow split as well as the size of the air-core. The flow velocities and air-core diameters are predicted by DRSM (differential Reynolds stress model) and LES (large eddy simulations) models were compared to experimental results. The predicted water splits and air-core diameter with LES and RSM turbulence models along with VOF (volume of fluid) model for the air phase, through the outlets for various inlet pressures were also analyzed. The LES turbulence model led to an improved turbulence field prediction and thereby to more accurate prediction of pressure and velocity fields. This improvement was distinctive for the axial profile of pressure, indicating that air-core development is principally a transport effect rather than a pressure effect.  相似文献   
10.
Ice and snow have often helped physicists understand the world. On the contrary it has taken them a very long time to understand the flow of the glaciers. Naturalists only began to take an interest in glaciers at the beginning of the 19th century during the last phase of glacier advances. When the glacier flow from the upslope direction became obvious, it was then necessary to understand how it flowed. It was only in 1840, the year of the Antarctica ice sheet discovery by Dumont d'Urville, that two books laid the basis for the future field of glaciology: one by Agassiz on the ice age and glaciers, the other one by canon Rendu on glacier theory. During the 19th century, ice flow theories, adopted by most of the leading scientists, were based on melting/refreezing processes. Even though the word ‘fluid’ was first used in 1773 to describe ice, more the 130 years would have to go by before the laws of fluid mechanics were applied to ice. Even now, the parameter of Glen's law, which is used by glaciologists to model ice deformation, can take a very wide range of values, so that no unique ice flow law has yet been defined. To cite this article: F. Rémy, L. Testut, C. R. Geoscience 338 (2006).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号