首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  国内免费   1篇
地球物理   2篇
海洋学   3篇
  2008年   2篇
  2004年   2篇
  2002年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
2.
杭州湾地波雷达观测的海流数据取样率分析   总被引:1,自引:0,他引:1  
根据杭州湾口区两台地波雷达5个半月观测的资料,对其中的3 189个有效观测时次的海流数据取样率(CSR)在空间和时间上的变化规律进行了分析,结果表明,在两台雷达波交叉观测的中心区域各测点的地波雷达观测的海流数据取样率高于外围区域,在中心区域海流数据取样率可达98%以上,向外围区域海流数据取样率逐渐平缓递减,到边缘区域海流数据取样率仅在20%以下;地波雷达观测的海流数据取样率有明显的日变化,白天海流数据取样率明显低于夜间;17时海流数据平均取样率达到最低值(约49%),然后很快上升,至02时达最高值(约74%),然后再缓慢下降至17时为止。同时在10时和20时地波雷达观测的海流数据取样率呈现两个相对低值点,可能与人们在这两个时段通讯繁忙所造成的干扰有一定的关系。海流流速对地波雷达观测的海流数据取样率也有较大影响,呈负相关,流速大时海流数据取样率比流速小时的要低,在海流数据取样率大于98%的中心区域,流速和海流数据取样率的相关系数小于-0.8,在海流数据取样率大于60%的区域,流速和海流数据取样率的相关系数小于-0.6,体现明显的相互关联。地波雷达观测的海流数据取样率和潮汐有着每日4次的良好相干,而似乎和风没有显著的关系。希望这些分析对地波雷达以后的推广使用能积累一些经验和参考意见。  相似文献   
3.
Using a three-dimensional non-linear shelf model, the elliptical properties (ellipticity, inclination of the ellipse, major and minor semi-axis and phase) of the M2 tide in the German Bight were calculated and compared with CODAR measurements. A series of barotropic and baroclinic calculations were carried out to investigate the influence of geometry, stratification and particularly inputs of freshwater on these parameters. The elliptical properties undergo stronger changes in zones of influence of embayments and in the deepening of the old Elbe Valley. Friction effects in the shallow areas are responsible for robust vertical variations of the ellipticity. The island of Helgoland induces wakes on its western and eastern sides. The discharge of freshwater of the rivers Elbe, Weser and Ems induced in general negative ellipticity. Although primarily determined by geography, baroclinic effects significantly modified the inclination of the ellipses. The calculated ellipses pattern of anticlockwise and clockwise tidal current rotation agrees quite well with CODAR measurements. The elliptical properties give a general idea of the interaction of tidal waves with coastal geometries.Responsible Editor: Hans Burchard  相似文献   
4.
The ZRE is a very complicated estuary with multi-river inlets. The total sum of river discharge in the upstream(away from the tidal influence region) of the Zhujiang River can be easily measured. However, when the total river discharges into the estuary from eight inlets, it is a very difficult task to obtain a continuous river discharge flux data from each branch of the Zhujiang River. However, the different ratios of river discharges between the river branches can significantly affect the estuarine circulation feature and baroclinic process. Moreover, the accuracy of numerical forecast for the estuarine circulation is very much dependent on the accuracy of the time history of the river discharge flux for each branch. Therefore, it is important to estimate river discharge from each branch in order to improve the accuracy of the model forecast for the circulation of the ZRE. The development of a new estimation method of the river discharges is focused on based on the system identification theory, numerical modeling and the time history data from the CODAR observed sea surface current. The new approach has been appfied to estimating the time history (hourly) of river discharge from each branch in the upstream of the ZRE.  相似文献   
5.
To the extent that sea surface temperature and colors can be considered passive tracers, their motions can be tracked to estimate the current velocities, or a conservation equation can be invoked to relate their temporal variations to the velocities. We investigate the latter, the so-called tracer inversion problem, with a particular focus on (1) the conditions under which the problem can be rendered over-determined for least squares solutions, (2) the possibility of using the tracer conservation equation within the “velocity projection” framework to estimate subsurface current profiles in shallow coastal waters, and (3) the accuracy of the tracer inversion calculation in terms of the data resolution and noise. The velocity projection framework refers to relating surface motion, either measured directly or made visible by tracers, to the subsurface current motion through the equations of motion. The accuracy of the tracer inversion calculation is quantified in terms of the spatial and temporal resolution of the tracer distribution. In the presence of irreducible tracer noise, the accuracy of the inversion rapidly degrades, and it is shown that the inversion with velocity projection can help improve accuracy. The tracer inversion method developed in this study is applied to the satellite sea surface temperature data, and the velocity result is compared to the velocity measurements made with the shore-based HF Coastal Current Radar. The potential of improving the velocity estimation with the present approach is indicated.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号