首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   4篇
  国内免费   77篇
测绘学   1篇
地球物理   18篇
地质学   115篇
海洋学   3篇
综合类   2篇
自然地理   5篇
  2023年   1篇
  2020年   2篇
  2019年   10篇
  2018年   9篇
  2017年   2篇
  2016年   5篇
  2015年   6篇
  2014年   10篇
  2013年   12篇
  2012年   6篇
  2011年   11篇
  2010年   6篇
  2009年   11篇
  2008年   5篇
  2007年   8篇
  2006年   3篇
  2005年   8篇
  2004年   5篇
  2003年   6篇
  2002年   1篇
  2001年   1篇
  2000年   5篇
  1997年   1篇
  1995年   1篇
  1994年   4篇
  1991年   3篇
  1990年   1篇
  1988年   1篇
排序方式: 共有144条查询结果,搜索用时 218 毫秒
1.
Crushability is one of the important behaviors of granular materials particularly under high stress states, and affects both the deformability and strength of the materials that are in essence associated with state‐dependent dilatancy. In this presentation, first, a new critical state model is proposed to take into account the three different modes of compressive deformation of crushable granular materials, i.e. particle rearrangement, particle crushing and pseudo‐elastic deformation. Second, the governing equations for cavity expansion in crushable granulates are introduced, in which the state‐dependent dilatancy as well as the bounding surface plasticity model are used. Then, the procedure to obtain semi‐analytical solutions to cavity expansion in the material is described in detail, in which a commercial differential equation solver is employed. Finally, cavity expansion analyses are carried out on Toyoura sand, a well‐documented granular material, to demonstrate the effects of crushability and state‐dependent dilatancy. The study shows that particle crushing does occur at both high stress and critical states and affects the stress fields and the deformation behavior of the material surrounding the cavity in association with state‐dependent dilatancy. This leads to conclusion that particle crushing and state‐dependent dilatancy have to be taken into account when cavity expansion theory is used to interpret cone penetration tests and pressuremeter tests. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
2.
Mechanisms of seismic quiescences   总被引:7,自引:0,他引:7  
In the past decade there have been major advances in understanding the seismic cycle in terms of the recognition of characteristic patterns of seismicity over the entire tectonic loading cycle. The most distinctive types of patterns are seismic quiescences, of which three types can be recognized:post-seismic quiescence, which occurs in the region of the rupture zone of an earthquake and persists for a substantial fraction of the recurrence time following the earthquake,intermediate-term quiescences, which appear over a similar region and persist for several years prior to large plate-rupturing earthquakes, andshort-term quiescences, which are pronounced lulls in premonitory swarms that occur in the hypocentral region hours or days before an earthquake. Although the frequency with which intermediate-term and short-term quiescences precede earthquakes is not known, and the statistical significance of some of the former has been challenged, there is a need, if this phenomena is to be considered a possibly real precursor, to consider physical mechanisms that may be responsible for them.The characteristic features of these quiescences are reviewed, and possible mechanisms for their cause are discussed. Post-seismic quiescence can be readily explained by any simple model of the tectonic loading cycle as due to the regional effect of the stress-drop of the previous principal earthquake. The other types of quiescence require significant modification to any such simple model. Of the possibilities considered, only two seem viable in predicting the observed phenomena, dilatancy hardening and slip weakening. Intermediate-term quiescences typically occur over a region equal to or several times the size of the rupture zone of the later earthquake and exhibit a relationship between the quiescence duration and size of the earthquake: they thus involve regional hardening or stress relaxation and agree with the predictions of the dilatancy-diffusion theory. Short-term quiescences, on the other hand, are more likely explained by fault zone dilatancy hardening and/or slip weakening within a small nucleation zone. Because seismicity is a locally relaxing process, seismicity should follow a behaviour known in rock mechanics as the Kaiser effect, in which only a very slight increase in strength, due to dilatancy hardening or decrease in stress due to slip weakening, is required to cause quiescence. This is in contrast to other precursory phenomena predicted by dilatancy, which require large dilatant strains and complete dilatancy hardening.Lamont-Doherty Geological Observatory  相似文献   
3.
Making measurements of electric resistivity at 16 s intervals, the authors noticed fast changes of this parameter prior to the occurrence of the main fracture. The changes are superposed on bay pulsations of increasing amplitude and decreasing period. This finding opens prospects for a wider use of an electric resistivity method and proves the high quality of automatic instruments, in particular their high resolution. It also gives evidence for the occurrence of short-period precursors in the fracture zone while the main fracture is being formed.  相似文献   
4.
刘元雪  施建勇 《岩土力学》2002,23(3):304-308
从土的各向异怀角度对土的可恢复剪胀现象进行了解释。基于各向异性情况下的土体弹性本构关系理论分析,认为土的可恢复剪胀现象可部分归因于土的各向异性引起的弹性剪胀。借助有关土体弹性参数实验结果,研究了应力诱导各迥异性对土体弹性剪胀的影响,结果表明:随土体应力诱导各向异性的增大,土体的弹性剪胀也增大。从土体弹性剪胀角度研究了土的卸荷体缩条件,认为土体卸荷体缩取决于加载应力路径的应力增量比,给出了土体出现卸荷体缩的区域。  相似文献   
5.
A novel conceptual model of the mechanics of sands is developed within an elastic–plastic framework. Central to this model is the realization that volume changes in anisotropic granular materials occur as a result of two fundamentally different mechanisms. The first is purely kinematic, dilative, and is the result of the changes in anisotropic fabric. There is also a second volume change in granular media that occurs as a direct response to changes in stress as in a standard elastic/plastic continuum. The inclusion of the two sources of volume change results in three important datum states. When subjected to isotropic strains, the resulting stress state in granular materials is not isotropic but lies upon the kinematic normal consolidation line. There exists a state at which the fabric‐induced volumetric strain rate becomes equal to the stress‐induced volumetric strain rate making the total plastic volumetric strain rate equal to zero. Granular response changes from contractive to dilative at this phase transformation line. The third datum state is the one in which the stress‐induced volumetric strain rate is zero. The sand, however, continues to dilate at this state with the difference between stress and dilation ratio a constant as predicted by Taylor's stress–dilatancy rule. These predictions are shown in accordance with experimental data from a series of drained tests and undrained on Ottawa sand. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
6.
针对粗粒料的应变软化、剪胀等力学特性,通过考虑以剪切带为标志的应变局部化现象,建立了具有广泛适用性的剪切损伤力学模型。损伤模型采用了包体理论中的剪切带数学简化,基于应变等价原理、Weibull分布,推导了粗粒料的应力-应变关系方程。从剪胀作用的机制出发,提出可以描述剪胀弱化的轴向塑性应变和体积塑性应变的非线性函数关系。结合粗粒料三轴压缩试验中的伺服过程,提出了基于遗传算法的损伤模型参数确定方法。通过开展不同围压下的粗粒料三轴压缩试验,对剪切损伤力学模型进行验证,进一步分析了参数演化对粗粒料强度和变形特征的影响。研究结果表明,考虑应变局部化特征的剪切损伤力学模型可以高精度的模拟粗粒料的应变软化和剪胀等特征,有效揭示剪切带内部变形对试样整体宏观变形的影响机制,模型中剪切带参数和围压的关系与粗粒料细观机制一致,计算得到强度组成与颗粒破碎、重组特征较为吻合。  相似文献   
7.
Stress–dilatancy relations have played a crucial role in the understanding of the mechanical behaviour of soils and in the development of realistic constitutive models for their response. Recent investigations on the mechanical behaviour of materials with crushable grains have called into question the validity of classical relations such as those used in critical state soil mechanics. In this paper, a method to construct thermodynamically consistent (isotropic, three‐invariant) elasto‐plastic models based on a given stress–dilatancy relation is discussed. Extensions to cover the case of granular materials with crushable grains are also presented, based on the interpretation of some classical model parameters (e.g. the stress ratio at critical state) as internal variables that evolve according to suitable hardening laws. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
8.
This paper presents a new constitutive model for the time dependent mechanical behaviour of rock which takes into account both viscoplastic behaviour and evolution of damage with respect to time. This model is built by associating a viscoplastic constitutive law to the damage theory. The main characteristics of this model are the account of a viscoplastic volumetric strain (i.e. contractancy and dilatancy) as well as the anisotropy of damage. The latter is described by a second rank tensor. Using this model, it is possible to predict delayed rupture by determining time to failure, in creep tests for example. The identification of the model parameters is based on experiments such as creep tests, relaxation tests and quasi‐static tests. The physical meaning of these parameters is discussed and comparisons with lab tests are presented. The ability of the model to reproduce the delayed failure observed in tertiary creep is demonstrated as well as the sensitivity of the mechanical response to the rate of loading. The model could be used to simulate the evolution of the excavated damage zone around underground openings. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
9.
A breccia vein sampled from a shear zone in greenschist facies metapelites at Mount Isa, Queensland, Australia, shows a systematic variation in vein geometry that is related to the geometry of folding and faulting within the sample. Calcite vein-fill is coarse grained and equigranular, suggesting precipitation in a fluid-filled space. Partially folded veins suggest that veining occurred during folding and faulting. The breccia vein contains a central zone in which dilation has occurred simultaneously in all directions in the plane of section, implying that this was a zone of high fluid pressure and nearly isostatic differential stress during folding and faulting. From these observations, it can be inferred that the breccia vein was a zone of high permeability and a likely fluid channel during deformation. This hypothesis was tested by stable isotope analysis of veins and host rocks. The calcite veins have δ13C values of -11.1 ± 0.1% and δ18O values of 6-10%o, whereas the host metapelite has δ13C values of -10.62 and -10.11% and δ18O values of 14-15%o. These values are consistent with an igneous-derived, H2O-dominated fluid that exchanged little oxygen with the host rocks, but derived much of its carbon from the wall rock. The isotopic disequilibrium between the veins and the wall rock confirms that the fluid was externally derived, and that the breccia vein acted as a channel for large-volume fluid flow within the shear zone.  相似文献   
10.
Analysis of Wedge Stability Using Different Methods   总被引:1,自引:0,他引:1  
Summary The stability problem of a rock slope containing a wedge resting on two intersecting discontinuities is of great interest in rock slope engineering. It is a statistically indeterminate problem with two extra unknowns according to the force (stress) equilibrium analysis. The widely used limit equilibrium methods in practice assume that the directions of the shear forces acting on the two discontinuities are parallel to their line of intersection. The validity of this assumption, however, has not been verified theoretically. This paper presents a general limit equilibrium method that determines the directions of the shear forces by using Pans Maximum principle and an upper bound method that applies the classic upper bound theorem of limit analysis to avoid making extra assumptions. The formulations of the two methods are derived. A non-symmetric wedge and a symmetric wedge are analyzed using the two derived methods. To further explore the influence on stability due to the direction of the shear force acting on the two discontinuities, three-dimensional finite-element analyses are also conducted. The results are compared and discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号