首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   6篇
  国内免费   5篇
地球物理   5篇
地质学   27篇
海洋学   2篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2014年   3篇
  2013年   3篇
  2011年   2篇
  2010年   2篇
  2009年   3篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  1998年   1篇
  1997年   2篇
排序方式: 共有34条查询结果,搜索用时 609 毫秒
1.
林逸  张长厚 《地质科学》2018,(4):1488-1498
古构造应力场是构造动力学研究中的一个重要内容,且断层滑动数据古应力反演已经成为古构造应力场恢复研究中比较常用的重要方法之一。近年来,断层滑动数据古应力反演方法研究和应用取得了一系列重要进展,但有关反演结果的解释仍存歧义,反演结果的影响因素及其误差范围等并未得到深入研究与定量分析。本文总结指出,影响断层滑动数据古应力反演结果的主要因素包括变形体制、剪切破裂面类型、断层面的形态以及地质体内薄弱面的存在等。在此基础上,分别对新生断层和先存薄弱面滑动数据的古应力反演综合误差进行了定量分析。研究指出,在可以大致厘定变形体制或误差在允许范围内的前提下,将断层滑动数据反演结果解释为应力状态是合理可行的。各种因素导致的反演误差定量分析表明,同一期构造应力场形成的破裂面滑动数据的古应力方位反演误差最大不超过35°。换言之,在没有证据表明存在不同期次的应力作用情况下,主应力方位变化小于35° 的应力状态,可以划归同一期应力场。  相似文献   
2.
The Zagros fold-and-thrust belt of SW-Iran is among the youngest continental collision zones on Earth. Collision is thought to have occurred in the late Oligocene–early Miocene, followed by continental shortening. The High Zagros Belt (HZB) presents a Neogene imbricate structure that has affected the thick sedimentary cover of the former Arabian continental passive margin. The HZB of interior Fars marks the innermost part of SE-Zagros, trending NW–SE, that is characterised by higher elevation, lack of seismicity, and no evident active crustal shortening with respect to the outer (SW) parts. This study examines the brittle structures that developed during the mountain building process to decipher the history of polyphase deformation and variations in compressive tectonic fields since the onset of collision. Analytic inversion techniques enabled us to determine and separate different brittle tectonic regimes in terms of stress tensors. Various strike–slip, compressional, and tensional stress regimes are thus identified with different stress fields. Brittle tectonic analyses were carried out to reconstruct possible geometrical relationships between different structures and to establish relative chronologies of corresponding stress fields, considering the folding process. Results indicate that in the studied area, the main fold and thrust structure developed in a general compressional stress regime with an average N032° direction of σ1 stress axis during the Miocene. Strike–slip structures were generated under three successive strike–slip stress regimes with different σ1 directions in the early Miocene (N053°), late Miocene–early Pliocene (N026°), and post-Pliocene (N002°), evolving from pre-fold to post-fold faulting. Tensional structures also developed as a function of the evolving stress regimes. Our reconstruction of stress fields suggests an anticlockwise reorientation of the horizontal σ1 axis since the onset of collision and a significant change in vertical stress from σ3 to σ2 since the late stage of folding and thrusting. A late right-lateral reactivation was also observed on some pre-existing belt-parallel brittle structures, especially along the reverse fault systems, consistent with the recent N–S plate convergence. However, this feature was not reflected by large structures in the HZB of interior Fars. The results should not be extrapolated to the entire Zagros belt, where the deformation front has propagated from inner to outer zones during the younger events.  相似文献   
3.
Since the mechanical twinning along calcite e-planes has a critical resolved shear stress, not only principal stress axes but also differential stress can be determined from the orientations of twin lamellae. Based on the five-dimensional stress space that fulfills the principle of coordinate invariance, it is shown in this article that the inversion of twin and untwin data is comparable with fitting a spherical cap to data points on a unit sphere in the space. The principal stress orientations and stress ratio are indicated by the center of the cap, whereas differential stress is denoted by the size of the cap. Based on this geometrical interpretation, the generalized Hough transform was applied to the inversion of the data in this study. The new method is demonstrated to be robust to sampling bias, variability in the critical resolved shear stress. The determination of differential stress was difficult when the differential stress to be detected was ∼10 times larger than the critical resolved shear stress. Stresses were separated by the method from heterogeneous data successfully as long as the spherical caps corresponding to the stresses to be detected had no or a small intersection.  相似文献   
4.
The carbonates of the Barremian to Aptian Qishn Formation are outcrop equivalents to major hydrocarbon reservoirs in the Middle East and in Oman specifically. The rocks are exposed in the Haushi–Huqf area of eastern Oman where they are affected by pervasive jointing and localized folding and faulting. Information gathered in the Huqf outcrops can be used to formulate predictions on fracture patterns in adjacent reservoirs. Systematic joints are confined to few meters-thick intervals of widely differing lithologies, which can be correlated over hundreds of square kilometers. Over the entire area, systematic joints are typically more than tens of meters long, have spacings of 4–18 cm and homogeneous morphologies. These joints are interpreted to be of Late Aptian age. The dominant set of joints strikes consistently NW–SE and developed parallel to the causative maximum horizontal compression SH. The direction of compression is at an high angle to the two major tectonic domains of the region, the subsiding Oman Interior basins and the elevated Haushi-Huqf High. NW–SE compression is proposed to have caused crustal/lithospheric buckling and thereby to have controlled Jurassic to Early Tertiary patterns of vertical movements. In such a scenario, the direction of compression is predicted to be constant over the entire domain. It is thus expected that Qishn carbonates in the subsiding Oman Interior basins also experienced NW–SE compression and developed systematic joints similar to those observed in the Huqf region. In the Neogene, with the establishment of the Zagros stress field, the maximum horizontal compression became roughly N–S, thereby possibly leading to the closure of pre-existing joint systems.  相似文献   
5.
Randel Tom Cox   《Tectonophysics》2009,474(3-4):674-683
Mesoscale structures in Paleozoic rocks of the Ozark plateaus reveal four Pennsylvanian deformation episodes in midcontinent North America. The two earliest episodes can be assigned to progressive northwestward docking of the Ouachita terrane with North America. Early extensional structures (Event 1) indicate a northwest/southeast maximum horizontal stress (Hmax) during Early Pennsylvanian Ouachita terrane advance. Event 2 extensional and strike-slip structures indicate Hmax across the Ozark plateaus that varies systematically from north-northwest/south-southeast in the south to northeast/southwest in the north. This suggests development of a slip-line deformation field in response to minor northeastward lateral escape of lithospheric blocks away from the northwestward-moving Ouachita terrane's leading edge, which acted as an indenter in western Arkansas, southeastern Oklahoma, and Texas. Younger contractional and strike-slip structures of Event 3 indicate northeast/southwest Hmax across the entire Ozark plateaus, and deformation orientation and intensity are not readily assigned to Ouachita foreland deformation and may be related to Middle Pennsylvanian Ancestral Rockies contractional deformation. Finally, Event 4 contractional structures indicate northwest/southeast Hmax consistent with southern Appalachian late stage convergence.Deformation episodes are localized along basement fault zones, particularly at major bends, suggesting minor restraining-bend uplifts along strike-slip faults. Geometries of conjugate normal fault and hybrid shear joint arrays indicate localized areas of high differential stress consistent with basement block uplift at these bends. High-angle faults reactivated in a reverse sense and bedding-parallel veins suggest tensile minimum stresses and pore fluid pressures exceeding lithostatic stress, consistent with brine pulses driven into the midcontinent during Late Paleozoic orogeny (as proposed by other authors).  相似文献   
6.
The Atlantic Moroccan Meseta margin is affected by far field recent tectonic stresses. The basement belongs to the variscan orogen and was deformed by hercynian folding and metamorphism followed by a post-Permian erosional stage, producing the flat paleorelief of the region. Tabular Mesozoic and Mio-Plio-Quaternary deposits locally cover the Meseta, which has undergone recent uplift, while north of Rabat the subsidence continues in the Gharb basin, constituting the foreland basin of the Rif Cordillera.The Plio-Quaternary sedimentary cover of the Moroccan Meseta, mainly formed by aeolian and marine terraces deposits, is affected by brittle deformations (joints and small-scale faults) that evidence that this region – considered up to date as stable – is affected by the far field stresses. Striated faults are recognized in the oldest Plio-Quaternary deposits and show strike-slip and normal kinematics, while joints affect up to the most recent sediments.Paleostress may be sorted into extensional, only affecting Rabat sector, and three main compressive groups deforming whole the region: (1) ENE–WSW to ESE–WNW compression; (2) NNW–SSE to NE–SW compression and (3) NNE–SSW compression. These stresses can be attributed mainly to the NW–SE oriented Eurasian-African plate convergence in the western Mediterranean and the escape toward the SW of the Rif Cordillera. Local paleostress deviations may be related to basement fault reactivation. These new results reveal the tectonic instability during Plio-Quaternary of the Moroccan Meseta margin in contrast to the standard passive margins, generally considered stable.  相似文献   
7.
This study presents a structural analysis based on hundreds of striated small faults (fault-slip data) in the Amman area east of the Dead Sea Transform System. Stress inversion of the fault-slip data was performed using an improved Right-Dihedral method, followed by rotational optimization (TENSOR Program, Delvaux, 1993). Fault-slip data (totaling 212) include fault planes, striations and sense of movements, are obtained from the Turonian Wadi As Sir Formation, distributed mainly along the southern side of the Amman – Hallabat structure in Jordan the study area. Results show that σ1 (SHmax) and σ3 (SHmin) are generally sub-horizontal and σ2 is sub-vertical in 8 of 11 paleostress tensors, which are belonging to a major strike-slip system with σ1 swinging around N to NW direction. The other three stress tensors show σ2 (SHmax), σ1 vertical and σ3 is NE oriented. This situation explained as permutation of stress axes σ1 and σ2 that occur during tectonic events and partitioned strike slip deformation. NW compressional stresses affected the area and produced the major Amman – Hallabat strike-slip fault and its related structures, e.g., NW trending normal faults and NE trending folds in the study area.The new paleostress results related with the active major stress field of the region the Dead Sea Stress Field (DSS) during the Miocene to Recent.  相似文献   
8.
鄂西白垩纪远安盆地的变形带构造   总被引:1,自引:0,他引:1       下载免费PDF全文
鄂西白垩纪远安盆地中大量发育变形带及其密切相关的断层,主要分为两期,早期为带有正断性质的北北东向组变形带及简单的正断层,形成在同沉积或早成岩阶段,而晚期为带走滑性质的北-南向组和北东向组变形带及复活断层,形成在白垩纪以后.根据实测的共轭变形带和断层滑动数据,古应力分析的结果表明,早期为北西西-南东东向拉张的伸展状态,而...  相似文献   
9.
Aruba, Bonaire, and Curaçao are islands aligned along the crest of a 200-km-long segment of the east-west-trending Leeward Antilles ridge within the broad Caribbean-South America plate boundary zone presently characterized by east-west, right-lateral strike-slip motion. The crust of the Leeward Antilles ridge represents the western segment of the Cretaceous-early Cenozoic Great Arc of the Caribbean, which obliquely collided, with the continental margin of northern South America in early Cenozoic time. Following the collision, the ridge was affected by folding and was segmented by oblique, northwest-striking normal faults that have produced steep-sided, northwest-trending, elongate islands and narrow shelves separated by deepwater, sediment-filled and fault-controlled basins. In this paper, we present the first fault slip observations on the Neogene carbonate rocks that cover large areas of all three islands. Our main objective is to quantify the timing and nature of Neogene to Quaternary phases of faulting and folding that have affected the structure and topography of this area including offshore sedimentary basins that are being explored for their petroleum potential. These data constrain three fault phases that have affected Aruba, Bonaire, and Curaçao and likely the adjacent offshore areas: 1) NW-SE-directed late Paleogene compression; 2) middle Miocene syndepositional NNW-SSE to NNE-SSW extension that produced deep rift basins transverse to the east-west-trending Leeward Antilles ridge; and 3) Pliocene-Quaternary NNE-trending compression that produced NW-SE-trending anticlines present on Aruba, Curaçao and Bonaire islands. Our new observations - that include detailed relationships between striated fault planes, paleostress tensors, and bedding planes - show that prominent bedding dips of Neogene limestone on Aruba, Bonaire and Curaçao were produced by regional tectonic shortening across the entire Leeward Antilles ridge rather than by localized, syndepositional effects as proposed by previous workers. We interpret Pliocene-Quaternary NNE-directed shortening effects on the Leeward Antilles ridge as the result of northeastward extrusion or “tectonic escape” of continental areas of western Venezuela combined with southeastward shallow subduction of the Caribbean plate beneath the ridge.  相似文献   
10.
F. Suter  M. Sartori  R. Neuwerth  G. Gorin   《Tectonophysics》2008,460(1-4):134-157
The northern Andes are a complex area where tectonics is dominated by the interaction between three major plates and accessory blocks, in particular, the Chocó-Panamá and Northern Andes Blocks. The studied Cauca Valley Basin is located at the front of the Chocó-Panamá Indenter, where the major Romeral Fault System, active since the Cretaceous, changes its kinematics from right-lateral in the south to left-lateral in the north. Structural studies were performed at various scales: DEM observations in the Central Cordillera between 4 and 5.7°N, aerial photograph analyses, and field work in the folded Oligo-Miocene rocks of the Serranía de Santa Barbara and in the flat-lying, Pleistocene Quindío-Risaralda volcaniclastic sediments interfingering with the lacustrine to fluviatile sediments of the Zarzal Formation.The data acquired allowed the detection of structures with a similar orientation at every scale and in all lithologies. These families of structures are arranged similarly to Riedel shears in a right-lateral shear zone and are superimposed on the Cretaceous Romeral suture.They appear in the Central Cordillera north of 4.5°N, and define a broad zone where 060-oriented right-lateral distributed shear strain affects the continental crust. The Romeral Fault System stays active and strain partitioning occurs among both systems. The southern limit of the distributed shear strain affecting the Central Cordillera corresponds to the E–W trending Garrapatas–Ibagué shear zone, constituted by several right-stepping, en-échelon, right-lateral, active faults and some lineaments. North of this shear zone, the Romeral Fault System strike changes from NNE to N.Paleostress calculations gave a WNW–ESE trending, maximum horizontal stress, and 69% of compressive tensors. The orientation of σ1 is consistent with the orientation of the right-lateral distributed shear strain and the compressive state characterizing the Romeral Fault System in the area: it bisects the synthetic and antithetic Riedels and is (sub)-perpendicular to the active Romeral Fault System.It is proposed that the continued movement of the Chocó–Panamá Indenter may be responsible for the 060-oriented right-lateral distributed shear strain, and may have closed the northern part of the Cauca Valley, thereby forming the Cauca Valley Basin.Conjugate extensional faults observed at surface in the flat-lying sediments of the Zarzal Formation and Quindío-Risaralda volcaniclastic Fan are associatedwith soft-sediment deformations. These faults are attributed to lateral spreading of the superficial layers during earthquakes and testify to the continuous tectonic activity from Pleistocene to Present.Finally, results presented here bring newinformation about the understanding of the seismic hazard in this area: whereas the Romeral Fault Systemwas so far thought to be themost likely source of earthquakes, themore recent cross-cutting fault systems described herein are another potential hazard to be considered.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号