首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   1篇
  国内免费   14篇
地质学   34篇
  2021年   1篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2008年   2篇
  2007年   6篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1991年   1篇
排序方式: 共有34条查询结果,搜索用时 668 毫秒
1.
The Tasman Fold Belt System in eastern Australia provides a record of the Palaeozoic geological history and growth of the Australian continent along the proto-Pacific margin of Gondwana inboard of an extensive and long-lived subduction system. The Hodgkinson and Broken River provinces represent prominent geological elements of this system and together form the northern Tasman Fold Belt System. Geochronological age dating of the timing of gold formation in the Amanda Bel Goldfield in the Broken River Province and the Hodgkinson Goldfield in the Hodgkinson Province provides constraints on the occurrence of a deformation and mineralisation episode in the Late Devonian–Early Carboniferous. Integration of these newly-obtained data with petrogenetic constraints and a time–space evaluation of the geological evolution of the Hodgkinson and Broken River provinces, as well as other terranes in the northern Tasman Fold Belt System, allows for the development of a geodynamic model for the Palaeozoic evolution of the northern Tasman Fold Belt System. Our model indicates that three cycles of extension–contraction occurred during the Palaeozoic evolution of the northern Tasman Fold Belt System. Episodes of extension were controlled by rollback of the subduction system along the proto-Pacific margin of Gondwana, whereas episodes of contraction resulted from accretion following the arrival of positively buoyant segments (i.e., micro-continental blocks/oceanic plateaus) at the subducting trench.Our composite interpretative model on the geodynamic evolution of the northern Tasman Fold Belt System integrates the timing of the development of mineral deposits throughout this part of the system and provides a significant advancement in the understanding of Palaeozoic geodynamics along the margin of Gondwana in northeast Australia and allows comparison with the southern part of the Tasman Fold Belt System.  相似文献   
2.
红牛-红山矿床位于西南三江成矿带的中甸岛弧,是形成于晚燕山期的矽卡岩型铜矿床。矿区与成矿作用密切相关的石英二长斑岩中角闪石和黑云母斑晶的出现以及较高的含F量(分别为1.49%和2.62%),表明其岩浆为富H2O富挥发分熔体;石英斑晶具有港湾状、浑圆状的溶蚀表面和钾长石细晶外壳,并且显示了典型的骸晶状结构指示了其岩浆经历了快速上升侵位过程和岩浆热液的自交代作用;钻孔中岩浆热液角砾岩和大量石英细脉的出现暗示了岩浆在快速上侵过程中发生了隐爆作用,形成并出溶了含有大量F、Cl等组分的高盐度超临界流体。矽卡岩阶段石榴子石和透辉石具有明显的三个期次:早期细粒的钙铝榴石(And22-57)和角岩中的透辉石(Hd7-27)形成于少量高温气液岩浆流体与围岩的扩散交代作用;中期粗粒的钙铁榴石(And75-98)和次透辉石-钙铁辉石(Hd10-99)形成于大量高温、低氧逸度的岩浆流体与围岩的渗滤交代作用;晚期的钙铝榴石脉(And14-60)和钙铁辉石脉(Hd31-58)形成于低温、高氧逸度的早期交代残留溶液。矽卡岩矿物的生成,使碳酸盐围岩丢失CO2,矿物体积减少,孔隙度和渗透性增加,为成矿提供了条件。退化变质阶段的透闪石、阳起石、绿帘石、绿泥石等交代早期矽卡岩矿物,消耗了成矿流体中大量的CO2和H2O,生成含水矿物以及石英、方解石,使围岩裂隙愈合,孔隙流体压力增加,导致成矿流体沸腾,形成大量黄铜矿、磁黄铁矿、黄铁矿、辉钼矿化。石英-硫化物阶段,由于成矿流体超压→流体沸腾,裂隙生成→减压排泄,裂隙愈合→流体超压的循环,在此过程中围岩经历了多次破裂和裂隙的愈合,直至整个成矿体系完全开放,并与大气水发生混合,使成矿流体中剩余金属最终沉淀。  相似文献   
3.
新疆阿尔泰巴特巴克布拉克铁矿床成矿作用研究   总被引:2,自引:0,他引:2       下载免费PDF全文
巴特巴克布拉克铁矿床赋存于上志留-下泥盆统康布铁堡组变质火山-沉积岩系中, 近矿围岩为石榴子石矽卡岩、角闪斜长变粒岩和浅粒岩。矿体总体顺层分布, 呈似层状、透镜状及不规则状, 空间上与矽卡岩密切相关。流体包裹体研究表明, 矽卡岩阶段形成的石榴子石中发育纯气体包裹体、气体包裹体、液体包裹体、含子矿物包裹体及熔融包裹体; 退化蚀变阶段发育液体包裹体和少量气体包裹体; 石英-硫化物阶段主要发育液体包裹体、含液体CO2的三相包裹体及少量纯气体包裹体、气体包裹体和含子矿物包裹体。矽卡岩阶段均一温度变化为217 ℃~499 ℃, 在255 ℃出现峰值, 盐度(NaCleq)变化为8.68%~22.65%; 退化蚀变阶段均一温度变化为181 ℃~432 ℃, 在225 ℃出现峰值, 盐度变化为12.85%~22.65%; 石英-硫化物阶段均一温度变化为140 ℃~482 ℃, 在155 ℃出现峰值, 盐度变化为0.18%~42.40%。石榴子石、石英和方解石的 δ18 OSMOW 变化为1.8‰~7.1‰, δ18ΟΗ2Ο为 -4.79‰~4.57‰, δDSMOW 为 -128‰~-84‰, 表明矽卡岩阶段成矿流体主要为岩浆水, 混合少量大气降水; 石英-硫化物阶段大气降水所占比例明显增加。方解石δ13 CV-PDB 变化为 -3.2‰~-2.0‰, 表明流体中的碳来自深部或地幔。  相似文献   
4.
The Anqing Fe–Cu skarn deposit, with an age of 134 to 142 Ma and resources of 62.4 Mt at 0.906% Cu and 32.2% Fe, is one of the most important deposits in the Yangtze River Metallogenic Belt, East China. To better understand the localization of orebodies and thus facilitate predictive exploration of deep orebodies, computational modeling is used to simulate the coupled geodynamic processes during the syn-tectonic cooling of the ore-related intrusion, based on geological and geophysical investigations in the Anqing orefield.The occurrences of the ore veins and veinlets in diorite and skarn, as well as the sharp zigzag boundary of the orebody, indicate that the Cu ores were deposited after the solidification of the diorite and skarn formation, and were located in some tensional structural spaces that are unevenly distributed along the contact zone between the felsic intrusion and sedimentary carbonates. The locations of orebodies are closely associated with the contact zone shape. The computational results of two models with two typical contact-shapes show that pore fluid flow was focused into the dilation zones from different sources. All the significant dilation zones, in which the existing orebodies were located, are distributed in some specific places of the south contact zone of the intrusion. In addition, these dilation zones are closely related to the contact zone shape of the intrusion and can control the location of orebodies through the coupled mechano-thermo-hydrological processes during cooling of the intrusion in the extension setting. The skarns are not critical for controlling the localization of orebodies. This means that exploration for deep ore should target deep dilation zones close to the contact boundary of the intrusion. Such recognition may provide a useful guide in selecting exploration targets in the Anqing orefield. As a direct result of computational modeling, an orebody has been discovered in the deep dilation zone in this orefield. It demonstrates that computational modeling is a promising tool for understanding the metallogenic processes and for facilitating the deep exploration of hidden orebodies that are related to intrusions.  相似文献   
5.
湘西汞矿床的地质特征与成因   总被引:2,自引:0,他引:2  
湘西汞矿床是湘黔汞矿带的重要组成部分.湘西汞矿受层位和构造双重控制,与岩浆活动没有直接联系,具有层带式整合矿体,矿物成分简单,汞锌矿化分带及后生成矿等地质特征.矿石硫来源于古海水硫酸盐的沉积硫;而汞的来源.则以上地幔去气作用产生的汞为主,寒武系等富汞建造的汞次之.燕山期地台活化时,以硫络合物或硫氢络合物的形式,在碱性溶液中沿深大断裂向上运转,当其与富含膏盐的客矿层相遇时,便与还原硫结合沉淀成矿.形成湘西层控后生汞矿床.  相似文献   
6.
华南地区是我国重要的战略矿产资源基地,以发育大规模多时代、多旋回花岗岩和独特的中生代铜钼钨锡铌钽铍铀等大规模稀有金属和有色金属成矿作用而闻名于世。华南地区稀有金属(W-Sn-Nb-Ta-Li-Be)成矿作用主要与高度分异演化的花岗岩密切相关。稀有金属矿床的分布受区域性断裂控制,主要集中于南岭地区和钦-杭大断裂两侧。成矿类型主要有花岗岩型、伟晶岩型、云英岩型、石英脉型、火山岩型、接触交代岩型(包括矽卡岩型和条纹岩型)。花岗岩型稀有金属矿床主要沿钦-杭大断裂两侧分布;伟晶岩型矿床主要分布在钦-杭大断裂花岗岩型矿床的外侧,以及邵武-河源断裂和政和-大埔断裂之间;接触交代型(含条纹岩型)稀有金属主要呈东西向分布于南岭地区,石英脉型和云英岩型稀有金属矿床主要与该地区的石英脉型钨矿有成因联系;火山岩型稀有金属矿床主要分布于政和-大埔断裂以东的东南沿海火山岩地区。华南稀有金属成矿可以分为7个阶段,分别是志留纪(424~420Ma)、早三叠世(248~244Ma)、晚三叠世(220~214Ma)、晚侏罗世(160~150Ma)、晚侏罗世-早白垩世(150~140Ma)、早白垩世(135~125Ma)和早白垩世-晚白垩世(105~90Ma)等。在每个时间段内,成矿时间相对集中。大规模稀有金属成矿主要集中于早白垩世。在不同成矿尺度,稀有金属矿化具有明显金属分带特征,且与有色金属矿化具有明显的成因关系;不同金属组合的稀有金属矿床具有不同的岩浆热液演化历史。地壳物质的部分熔融、持续能量供给,以及有利于岩浆高度分异演化的大型伸展构造是形成稀有金属矿床的重要条件。本文认为早白垩世(135~125Ma)是华南地区稀有金属大规模成矿的时期,该时期不仅成矿强度大,而且成矿类型多样,代表了华南中生代岩石圈大规模减薄或者全面裂解的峰期。  相似文献   
7.
Iron oxide-copper-gold deposits: an Andean view   总被引:22,自引:2,他引:20  
Iron oxide-copper-gold (IOCG) deposits, defined primarily by their elevated magnetite and/or hematite contents, constitute a broad, ill-defined clan related to a variety of tectono-magmatic settings. The youngest and, therefore, most readily understandable IOCG belt is located in the Coastal Cordillera of northern Chile and southern Peru, where it is part of a volcano-plutonic arc of Jurassic through Early Cretaceous age. The arc is characterised by voluminous tholeiitic to calc-alkaline plutonic complexes of gabbro through granodiorite composition and primitive, mantle-derived parentage. Major arc-parallel fault systems developed in response to extension and transtension induced by subduction roll-back at the retreating convergent margin. The arc crust was attenuated and subjected to high heat flow. IOCG deposits share the arc with massive magnetite deposits, the copper-deficient end-members of the IOCG clan, as well as with manto-type copper and small porphyry copper deposits to create a distinctive metallogenic signature.The IOCG deposits display close relations to the plutonic complexes and broadly coeval fault systems. Based on deposit morphology and dictated in part by lithological and structural parameters, they can be separated into several styles: veins, hydrothermal breccias, replacement mantos, calcic skarns and composite deposits that combine all or many of the preceding types. The vein deposits tend to be hosted by intrusive rocks, especially equigranular gabbrodiorite and diorite, whereas the larger, composite deposits (e.g. Candelaria-Punta del Cobre) occur within volcano-sedimentary sequences up to 2 km from pluton contacts and in intimate association with major orogen-parallel fault systems. Structurally localised IOCG deposits normally share faults and fractures with pre-mineral mafic dykes, many of dioritic composition, thereby further emphasising the close connection with mafic magmatism. The deposits formed in association with sodic, calcic and potassic alteration, either alone or in some combination, reveal evidence of an upward and outward zonation from magnetite-actinolite-apatite to specular hematite-chlorite-sericite and possess a Cu-Au-Co-Ni-As-Mo-U-(LREE) (light rare earth element) signature reminiscent of some calcic iron skarns around diorite intrusions. Scant observations suggest that massive calcite veins and, at shallower palaeodepths, extensive zones of barren pyritic feldspar-destructive alteration may be indicators of concealed IOCG deposits.The balance of evidence strongly supports a genetic connection of the central Andean IOCG deposits with gabbrodiorite to diorite magmas from which the ore fluid may have been channelled by major ductile to brittle fault systems for several kilometres vertically or perhaps even laterally. The large, composite IOCG deposits originated by ingress of the ore fluid to relatively permeable volcano-sedimentary sequences. The mafic magma may form entire plutons or, alternatively, may underplate more felsic intrusions, as witnessed by the ore-related diorite dykes, but in either case the origin of the ore fluid at greater, unobserved depths may be inferred. It is concluded that external 'basinal' fluids were not a requirement for IOCG formation in the central Andes, although metamorphic, seawater, evaporitic or meteoric fluids may have fortuitously contaminated the magmatic ore fluid locally. The proposed linkage of central Andean and probably some other IOCG deposits to oxidised dioritic magmas may be compared with the well-documented dependency of several other magmatic-hydrothermal deposit types on igneous petrochemistry. The affiliation of a spectrum of base-metal poor gold-(Bi-W-Mo) deposit styles to relatively reduced monzogranite-granodiorite intrusions may be considered as a closely analogous example.Editorial handling: B. Lehmann  相似文献   
8.
The Proterozoic sediment-hosted Zn–(Pb) sulfide and non-sulfide deposits of the São Francisco Craton, Brazil, are partially syn-diagenetic and epigenetic and were probably formed during extensional events. The majority of the deposits occur within shallow water dolomites. The Pb isotopic data of sulfides are relatively homogeneous for individual deposits and plot above the upper crust evolution curve of the Plumbotectonic model. Some of the deposits are characterized by highly radiogenic lead (206Pb/204Pb ≥ 21) originating from the highly radioactive crust of the São Francisco Craton. Pb and S isotopic data suggest the sources of metal and sulfur for the deposits to be the basement rocks and seawater sulfates in the sediments, respectively. The relatively high temperatures of formation (100 to 250 °C) and moderate salinity (3% to 20% NaCl equiv.) of the primary fluid inclusions in the sphalerite crystals suggest the participation of basinal mineralizing fluids in ore formation. The steep paleo-geothermal gradient generated by the radioactively enriched basement rocks probably assisted in heating up the circulating mineralizing fluids.  相似文献   
9.
The Neoproterozoic central African Copperbelt is one of the greatest sediment-hosted stratiform Cu–Co provinces in the world, totalling 140 Mt copper and 6 Mt cobalt and including several world-class deposits (10 Mt copper). The origin of Cu–Co mineralisation in this province remains speculative, with the debate centred around syngenetic–diagenetic and hydrothermal-diagenetic hypotheses.The regional distribution of metals indicates that most of the cobalt-rich copper deposits are hosted in dolomites and dolomitic shales forming allochthonous units exposed in Congo and known as Congolese facies of the Katangan sedimentary succession (average Co:Cu = 1:13). The highest Co:Cu ratio (up to 3:1) occurs in ore deposits located along the southern structural block of the Lufilian Arc. The predominantly siliciclastic Zambian facies, exposed in Zambia and in SE Congo, forms para-autochthonous sedimentary units hosting ore deposits characterized by lower a Co:Cu ratio (average 1:57). Transitional lithofacies in Zambia (e.g. Baluba, Mindola) and in Congo (e.g. Lubembe) indicate a gradual transition in the Katangan basin during the deposition of laterally correlative clastic and carbonate sedimentary rocks exposed in Zambia and in Congo, and are marked by Co:Cu ratios in the range 1:15.The main Cu–Co orebodies occur at the base of the Mines/Musoshi Subgroup, which is characterized by evaporitic intertidal–supratidal sedimentary rocks. All additional lenticular orebodies known in the upper part of the Mines/Musoshi Subgroup are hosted in similar sedimentary rocks, suggesting highly favourable conditions for the ore genesis in particular sedimentary environments. Pre-lithification sedimentary structures affecting disseminated sulphides indicate that metals were deposited before compaction and consolidation of the host sediment.The ore parageneses indicate several generations of sulphides marking syngenetic, early diagenetic and late diagenetic processes. Sulphur isotopic data on sulphides suggest the derivation of sulphur essentially from the bacterial reduction of seawater sulphates. The mineralizing brines were generated from sea water in sabkhas or hypersaline lagoons during the deposition of the host rocks. Changes of Eh–pH and salinity probably were critical for concentrating copper–cobalt and nickel mineralisation. Compressional tectonic and related metamorphic processes and supergene enrichment have played variable roles in the remobilisation and upgrading of the primary mineralisation.There is no evidence to support models assuming that metals originated from: (1) Katangan igneous rocks and related hydrothermal processes or; (2) leaching of red beds underlying the orebodies. The metal sources are pre-Katangan continental rocks, especially the Palaeoproterozoic low-grade porphyry copper deposits known in the Bangweulu block and subsidiary Cu–Co–Ni deposits/occurrences in the Archaean rocks of the Zimbabwe craton. These two sources contain low grade ore deposits portraying the peculiar metal association (Cu, Co, Ni, U, Cr, Au, Ag, PGE) recorded in the Katangan sediment-hosted ore deposits. Metals were transported into the basin dissolved in water.The stratiform deposits of Congo and Zambia display features indicating that syngenetic and early diagenetic processes controlled the formation of the Neoproterozoic Copperbelt of central Africa.  相似文献   
10.
Geographic Information Systems (GISs) are very useful tools for managing, checking, and organizing spatial information–from many sources and of many types–in thematic layers. Processing of these data enables exploration-oriented GISs to produce potential and predictive maps for a given commodity, which constitute documents of real use in decision-making. Integration of all information in a single reference system enables a better understanding of the parameters controlling a region's metallogeny, in terms of both time and space. But what scale should be used for developing a mineral exploration GIS? Should preference be given to systems with high spatial resolutions (scale < 1:500,000), or to more general systems with scales of around 1:1,500,000 or 1:2,000,000? Will the gain be worthwhile relative to the additional work generated by compilation at a higher scale? In order to make greater use of previous predictive studies performed on gold-rich epithermal and porphyry systems at the scale of the entire Andes, an expert-guided data-driven approach is now applied to a regional-scale GIS of NW Argentina, between the Puna and the Sierrras Pampeanas, where known deposits like Bajo de la Alumbrera, Agua Rica, and others, account for a metal potential of over 10 Mt Cu and 750 t Au. In developing this new predictive map, three criteria that were likely to be connected to the mineralizing event were selected and quantified: (i) lithostratigraphy, because of its role as a favourable environment for the development of mineralization, based on its physico-chemical properties; (ii) lithostratigraphic contacts, based on the rheological properties of the formations in contact; and (iii) the orientation of structural discontinuities, which channel source magmas and encourage the circulation of hydrothermal fluids. Assigning a score enables classification of the favourabilities calculated for each of the criteria considered. This approach is employed here to check and standardize the statistical results obtained by methods such as Weight of Evidence Modelling or an algebraic approach. For each criterion, four classes were distinguished: very favourable: score = 3; favourable: score = 2; slightly favourable: score = 1; and unfavourable: score = 0. The predictive map is obtained by adding the scores for the three favourable criteria defined above.The regional-scale work identified 20 anomalous envelopes with cumulative scores greater than 5. They correspond to mining areas that are active (e.g., Bajo de la Alumbrera), under development (e.g., Agua Rica), or abandoned (e.g., La Mejicana), or to new areas (e.g., the Vicuña Pampa Volcanic Complex). Structural analysis of the region, integrating the orientation of the favourable envelopes, suggests that the mineralizing fluids were emplaced under extensional conditions, sub-parallel to the principal directions of shortening: (i) WNW–ESE, found along the southern edge of the Puna; and (ii) E–W, seen in the Sierra de Famatina. It appears that a regional-scale information system is a tool that is well suited to the definition of areas for mineral prospecting, and to the study and confirmation of metallotects usable for mineral exploration.Comparison with work conducted on the basis of a 1:2,000,000 geological compilation shows that the principal mining districts can indeed be found at continental scale. On the other hand, the lack of detail inherent at a scale of 1:2,000,000 may lead to inaccuracies, in particular fictitious favourabilities assigned to formations that are genetically unrelated to the mineralization, but that contain, for example, small Tertiary intrusive bodies that cannot be recorded at this scale. This comparison therefore shows that the use of a continental-scale GIS is effective, and well suited to the definition of prospective areas at a strategic level.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号