首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   1篇
  国内免费   22篇
地球物理   1篇
地质学   35篇
  2021年   4篇
  2020年   3篇
  2019年   3篇
  2017年   3篇
  2016年   3篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2009年   1篇
  2008年   2篇
  2006年   4篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  1998年   1篇
  1997年   1篇
排序方式: 共有36条查询结果,搜索用时 396 毫秒
1.
Daraban Leucogranite dykes intruded discordantly into the basal serpentinized harzburgite of the Mawat Ophiolite, Kurdistan region, NE Iraq. These coarse grained muscovite-tourmaline leucogranites are the first leucogranite dykes identified within the Mawat Ophiolite. They are mainly composed of quartz, K-feldspar, plagioclase, tourmaline, muscovite, and secondary phologopite, while zircon, xenotime, corundum, mangano-ilemnite and cassiterite occur as accessories.The A/CNK value of the granite dyke samples varies from 1.10 to 1.22 indicating a strongly peraluminous composition. CaO/Na2O ranges from 0.11 to 0.15 and Al2O3/TiO2 from 264 to 463, similar to the strongly peraluminous (SP) granites exposed in ‘high-pressure’ collision zones such as the Himalayas.Ar–Ar muscovite step-heating dating yields 37.57 ± 0.25 and 38.02 ± 0.53 Ma plateau ages for two samples which are thought to reflect either their magmatic emplacement or resetting during collision-related metamorphism. Mineral chemistry shows evidence of both primary and secondary types of muscovite, with cores favouring the magmatic interpretation and slight effects of a late syn-serpentinization fluid seen at the rims.Geochemical features of Daraban Leucogranite dykes favour a syn-collisional tectonic setting. They probably formed in response to the continental collision between Eurasia and Arabia during the initial stage of the opening of the Gulf of Aden at 37 Ma. The muscovite ages and geochemical features of Daraban Leucogranite are strong evidence for the timing of the continental collision between northeastern Arabia and Eurasia in Kurdistan region of Iraq.  相似文献   
2.
喜马拉雅淡色花岗岩   总被引:62,自引:33,他引:29  
在青藏高原南部的喜马拉雅地区,分布有两条世界瞩目的淡色花岗岩带。南带主要沿高喜马拉雅和特提斯喜马拉雅之间的藏南拆离系(STDS)分布,俗称高喜马拉雅淡色花岗岩带,构成喜马拉雅山的主体。北带淡色花岗岩位于特提斯喜马拉雅单元内,又被称之为特提斯喜马拉雅淡色花岗岩带。这些花岗岩多以规模不等的岩席形式侵入到周边沉积-变质岩系之中,或者呈岩株状产出于变质穹窿的核部。岩体本身大多岩性均匀,变形程度不等,但岩体边缘可见较多的围岩捕虏体,并在部分情况下见及围岩的接触变质作用,反映它们的异地侵位特征。上述两带中的淡色花岗岩在矿物组成和岩石类型上表现为惊人的相似性,主要由不同比例的石英、钾长石、斜长石、黑云母(5%)、白云母、电气石和石榴石等构成二云母花岗岩、电气石花岗岩和石榴石花岗岩三大主要岩石类型。从不同地区的野外观察来看,二云母花岗岩为喜马拉雅淡色花岗岩的主体岩石类型,而电气石花岗岩和石榴石花岗岩主要以规模不等的脉体形式赋存于二云母花岗岩之中,反映前两者晚期侵位的特征。地球化学特征上,这些花岗岩具有高Si、Al、K,低Ca、Mg、Fe、Ti的特点,接近花岗岩的低共熔点组分。绝大多数淡色花岗岩具有较高的含铝指数,属于过铝花岗岩。微量元素表现为较大的变化范围,但总体上表现为富集大离子亲石元素K、Rb和放射性元素U,而不同程度亏损Ba、Th、Nb、Sr、Ti等元素。稀土元素总量总体上明显低于世界上酸性岩的平均丰度,且绝大部分表现为轻-中等程度的稀土元素分馏和不同程度的Eu负异常。传统认为,喜马拉雅淡色花岗岩是原地-近原地侵位的纯地壳来源的低熔花岗岩。但本文通过分析提出,该花岗岩可能是从一种高温的花岗岩浆演化而来,其岩浆源区的性质或成因类型目前还难以确定。该岩浆在上升侵位的过程中曾经历过大规模地壳物质的混染,并发生了高度分离结晶作用。因此,喜马拉雅淡色花岗岩首先是一种高分异型的花岗岩,是真正意义上的异地深成侵入体,而并不是原地或半原地的部分熔融体。这种以大规模地壳混染和结晶分异作用为特征的花岗岩系,在花岗岩的研究内容中还未被充分地讨论。以前根据相关信息认为这些岩石来自于沉积岩部分熔融的结论,只是较多地注意到了后期地壳混染和结晶分异作用的特征。即使这些岩石的原始岩浆将来被证明真的来源于沉积岩系的部分熔融,那以前的结论也只能说是"歪打正着"。根据形成年龄和地质-地球化学特征,本文将这些花岗岩划分为原喜马拉雅(44~26Ma)、新喜马拉雅(26~13Ma)和后喜马拉雅(13~7Ma)三大阶段。其中第一阶段对应印度-亚洲汇聚而导致的大陆碰撞造山作用,而后两个阶段同加厚的喜马拉雅-青藏高原碰撞造山带拆沉作用有关,对应青藏高原的全面隆升。根据这些淡色花岗岩的岩石与地球化学特征,我们还不能支持青藏高原存在广泛的中地壳流动的模型。相反,俯冲的高喜马拉雅岩系在深部的部分熔融及随该岩系折返而发生的分离结晶作用可很好地解释淡色花岗岩所具有的系列特征。  相似文献   
3.
本文通过对东喜马拉雅错那地区亚马荣岩体的地球化学、锆石U-Pb年代学和Hf同位素研究,试图探索亚马荣岩体的形成机制,解释地壳深熔作用过程。锆石U-Pb定年获得两期年龄,分别为14.4Ma和17Ma,结合前人已有结果,本文认为错那地区的深熔作用至少持续5Myr时间。亚马荣岩体具有较高Si O2(71.85%~72.91%)、Al2O3(15.30%~15.67%)含量,较低的Fe2O3T(0.58%~0.90%)、Ca O(0.72%~1.05%)含量,铝饱和指数(A/CNK)为1.08~1.22;锆石Ti温度计、εHf(t)的变化以及大离子亲石元素Rb/Sr比值和Ba含量之间的协变关系都说明,错那淡色花岗岩形成过程中存在多种熔融方式,经历了脱水熔融和水致熔融的转变,发生熔融反应的转变可能与藏南东-西向伸展构造的启动有关。  相似文献   
4.
高利娥  曾令森  刘静  谢克家 《岩石学报》2009,25(9):2289-2302
藏南也拉香波穹隆位于近东西向展布的北喜马拉雅片麻岩穹隆(NHGD)最东端,主要由石榴角闪岩、石榴石云母片麻岩、二云母花岗岩和淡色花岗岩组成.SHRIMP锆石U/Pb定年结果表明也拉淡色花岗岩的结晶年龄为35.3±1.1Ma,明显老于位于该穹隆以西类似的淡色花岗岩(年龄普遍<25Ma).全岩元素和Sr-Nd同位素测试结果揭示:(1)也拉香波淡色花岗岩为过铝质富钠花岗岩;(2)与片麻岩相似,也拉香波淡色花岗岩富集大离子亲石元素(LILE,如K,Sr,Rb和Ba),但亏损Ti,Y,Yb,Sc和Cr;(3)和片麻岩或角闪岩相比,也拉香波淡色花岗岩同时亏损LREE和HREE,但与HREE相比,LREE相对富集;(4)在Sr-Nd同位素系统特征上.淡色花岗岩初始Sr同位素比值与角闪岩的相当,在0.711949~0.719344之间;但远小于片麻岩.而Nd同位素组成在片麻岩和角闪岩之间,在-8.9~-15.0之间.以石榴角闪岩和片麻岩为端元,简单混合计算表明:由石榴角闪岩为主和片麻岩为辅组成的混合源区发生部分熔融作用,各自产生的熔体进行不同程度的混合,可形成类似于也拉香波淡色花岗岩成分的岩浆,其中角闪岩的部分熔融起主要作用.使用Zr在岩浆中的饱和浓度温度计得出岩浆的平均温度为673℃,在此温度下,变泥质片麻岩在高压(~10kbar)条件下的水致部分熔融和角闪岩部分熔融都可形成也拉过铝质富钠淡色花岗岩,但角闪岩的脱水部分熔融起主导作用.在地壳增厚条件下,下地壳角闪岩的部分熔融可能是导致喜玛拉雅造山带从缩短增厚向伸展垮塌转换的主要因素之一.  相似文献   
5.
在喜马拉雅碰撞造山带中,石榴石是变泥质岩的主要造岩矿物,也是花岗岩或淡色体的重要副矿物,保存了有关地壳深熔作用的关键信息,是揭示大型碰撞造山带中-下地壳物质的物理和化学行为的重要载体。在喜马拉雅造山带内,新生代花岗质岩石(淡色花岗岩和混合岩中的淡色体)含两类石榴石,大多数为岩浆型石榴石,自形-半自形,不含包裹体,但淡色体中含有港湾状的混合型石榴石。岩浆型石榴石具有以下地球化学特征:(1)从核部到边部,显示了典型的"振荡型"生长环带;(2)富集HREE,亏损LREE,从核部到边部,Hf、Y和HREE含量降低;(3)显著的Eu负异常;(4)相对于源岩中变质石榴石,Mn和Zn的含量显著增高。岩相学和地球化学特征都表明:变泥质岩熔融形成的熔体(淡色体)捕获了源岩的变质石榴石,熔体与石榴石反应导致大部分元素的特征被改变,只在核部保留了源岩的部分信息。同时,在花岗质熔体结晶过程中,形成少量的岩浆型石榴石。这些石榴石摄取了熔体中大量的Zn,浓度显著升高,在斜长石和锆石同步分离结晶作用的共同影响下,石榴石中Eu为明显负异常,Hf、Y和HREE浓度从核部到边部逐渐降低。上述数据和结果表明,花岗岩中石榴石的矿物化学特征记录了精细的有关花岗岩岩浆演化的重要信息。  相似文献   
6.
中天山白石头泉岩体年代学、岩石成因及构造意义   总被引:2,自引:2,他引:0  
白石头泉岩体位于中天山北缘边界断裂(沙泉子断裂)南侧。该岩体从下至上可分为五个连续过渡的岩相带,即淡色花岗岩(a带),含天河石花岗岩(b带),天河石花岗岩(c带),含黄玉天河石花岗岩(d带)以及黄玉钠长花岗岩(e带),其中,b、c、d和e带均为a带分异的产物。白石头泉岩体的LA-ICP-MS锆石U-Pb定年结果表明,该岩体侵位于早二叠世早期(295.6±1.3Ma),并于印支期(~214Ma)经历了一次热事件的改造。淡色花岗岩在主量元素上富硅(SiO2= 74.93%~76.18%)、富碱(K2O + Na2O=8.07%~8.80%)、富钠(K2O / Na2O=0.82~0.89),贫钙、镁,而在微量元素上富Rb、F和Ga(Al/Ga比值为2217~3134),贫Ba、Sr和Eu并具强烈的铕负异常(δEu=0.0020~0.0091),反映出其源区为富含白云母的片岩(或片麻岩),成岩压力较低,温度大于860℃。结合区域地质特征,作者等认为白石头泉岩体形成于相对拉张的构造背景,是中-上地壳源岩经历高温贫水熔融的产物,其形成与幔源岩浆内侵作用有关。  相似文献   
7.
Laboratory experiments were carried out continuously for 30–35 days at 25 and 5°C in three different buffer solutions of pH 4.0, 2.2 and 8.4 to calculate dissolution rates of two minerals, calcite (CC) and dolomite (DM) and two rocks, leucogranite (LG) and gneiss (GN) from the Himalayan range. Calculated rates in terms of release of targeted elements versus time (Ca for CC; Mg for DM; Si for LG and GN) demonstrate direct correlation with temperature. Dissolution rates are higher at 25°C compared to 5°C. CC and DM were experimented only at pH 8.4 and results show that both undergo congruent dissolution with CC dissolving ∼5 times faster than DM. Ca and Mg exhibit average apparent activation energies (E a) of 13.98 and 9.98 kcal mol−1 respectively at pH 8.4 which reflects greater sensitivity of CC dissolution than DM dissolution towards an increase in temperature. Scanning Electron Microscope attached with Energy Dispersive X-Ray Analyser (SEM-EDX) data indicates that dissolution is controlled primarily by surface-reaction processes, with dislocation sites contributing maximum to the dissolution. As compared to CC and DM dissolution, LG and GN undergo relatively slower incongruent dissolution with precipitation of some secondary minerals as revealed from X-ray diffractometer (XRD) results. Rates of dissolution of LG is maximum at pH 2.2, moderate at pH 8.4 and least at pH 4.0, whereas GN shows maximum dissolution at pH 2.2, moderate at pH 4.0 and least at pH 8.4. A comparison in dissolution behavior of LG and GN at experimental conditions reveals that increase in Si-release rate in the temperature range between 5 and 25°C is maximum at pH 8.4 (∼3.4–4.5 times), moderate at pH 4.0 (∼3–1.8 times) and least at pH 2.2 (∼1.0–1.5 times). Within the experimental temperature range, calculated values of E a for Si release during LG and GN dissolution advocates positive correlation with pH. A substantial decrease in initial values of Brunauer–Emmett–Teller (BET) surface area of DM, LG, and GN has been encountered at the end of the experiment, except for CC for which an increase is observed. The study clearly demonstrates the dissolution behavior of pure minerals and rocks under controlled conditions. The dissolution rates assume enormous significance for the release of trace elements from rocks/minerals to the reacting water.  相似文献   
8.
喜马拉雅造山带晚中新世麻迦淡色花岗岩的构建机制   总被引:3,自引:0,他引:3  
胡古月  曾令森  陈翰  高利娥 《地质学报》2016,90(8):1737-1754
在北喜马拉雅萨迦片麻岩穹窿西南侧发育有麻迦淡色花岗岩体,出露于南北向申扎—定结裂谷正断层的下盘,属一处较大规模的晚中新世淡色花岗岩体。该岩体具有较均一的元素和同位素(Sr和Nd)组成,但与多数喜马拉雅淡色花岗岩相比,具有异常高的(~(87)Sr/~(86)Sr)_i比值(0.85033~0.85034)和异常低的_(εNd)(t)值(-19.26~-18.30)组成,指示其部分熔融源区有更成熟古老地壳物质的参与。麻迦淡色花岗岩SHRIMP锆石U-Pb定年结果显示:1该岩体主要记录了至少两阶段岩浆结晶作用,分别发生在11.6±0.2 Ma和9.6±0.2 Ma;2个别13.8~16.0 Ma的岩浆作用年龄;3多数锆石继承核年龄分布于泛非期,少数年龄为中元古代(1558~1584 Ma)。在麻迦淡色花岗岩体南侧约40km处的日玛那穹窿,同位于申扎—定结南北向正断层的下盘,出露有大量原岩年龄为古元古代的日玛那糜棱岩,元素地球化学特征上类似于变泥质岩,显示高SiO_2(70.6%~74.6%),Al_2O_3(12.3%~14.0%),K_2O(4.22%~4.93%),A/CNK(1.50~1.58)和K_2O/Na_2O(1.42~2.18),代表了部分熔融源区可能存在的古老地壳物质岩石单元。因此,以麻迦淡色花岗岩为代表的北喜马拉雅晚中新世地壳深熔作用可能与青藏高原后碰撞阶段东西向伸展作用相关,泛非期变泥质岩及少量日玛那糜棱岩所代表的更古老岩石单元在16.0 Ma开始发生部分熔融,并在11.6 Ma至9.6 Ma之间达到深熔作用峰期,熔体活动可能持续了~2myr,以岩脉汇聚的形式延南北向正断层上升,构成侵位至北喜马拉雅特提斯沉积岩系之中的晚中新世麻迦淡色花岗岩体。  相似文献   
9.
高黎贡构造带作为藏东三江地区大地构造上的一条重要构造带,在印度-欧亚板块碰撞过程中起着重要的调节作用,并被认为是该地区发生"大陆逃逸"与地块旋转的西边界。本文以高黎贡构造带中的深变质岩为研究对象,通过对高黎贡变质岩带南段进行详细地构造解析,发现其内部广泛发育一系列或顺岩石面理、或切割面理分布的淡色花岗岩脉;并选取了5个淡色花岗岩脉样品进行锆石U-Pb测年,这5个样品的锆石~(206)Pb/~(238)U年龄值主要分布于二个区间:68~40Ma和24~21Ma,并在45Ma左右形成一个巨大的峰值。基于锆石的晶形、晶内结构和微量元素组成特征等方面进行锆石成因学分析,认为本文所测试的5个淡色花岗岩脉样品的锆石为深熔作用过程中形成的锆石;从而推测高黎贡变质岩带南段发生深熔作用并形成淡色花岗岩脉的时代主要集中于68~40Ma和24~21Ma。  相似文献   
10.
The Rössing granite-hosted uranium deposit in the Central Zone of the Pan-African Damara Orogen, Namibia, is situated in the “SJ area” to the south of the Rössing Dome. The coincidence of a number of features in this area suggests that mineralization is closely linked to late-kinematic evolution of the Rössing Dome. These features include: (1) the rotation of the dome's long axis (trend of 017°), relative to the regional F3 trend of 042°; (2) southward dome impingement, concomitant with dome rotation, producing a wedge-shaped zone of alkali-leucogranites, within which uranium mineralization is transgressive with respect to granites and their host lithologies; uranium mineralization and a high fluid flux are also confined to this arcuate zone to the south and south-east of the dome core and (3) fault modeling that indicates that the SJ area underwent late-D3 to D4 brittle–ductile deformation, producing a dense fault network that was exploited by leucogranites. Dome rotation and southward impingement occurred after a protracted period of transtensional tectonism in the Central Zone, from ca. 542 to 526 Ma, during which I- and S-type granites were initiated in a metamorphic core complex. Late-kinematic deformation involved a rejuvenation of the stresses that acted from ca. 600 to 550 Ma. This deformation overlapped with uranium-enriched granite intrusion in the Central Zone at 510 ± 3 Ma. Such late-kinematic, north–south transpression, which persisted into the post-kinematic cooling phase until at least 478 ± 4 Ma, was synchronous with left-lateral displacement along NNE-trending (“Welwitschia Trend”) shears in the vicinity of Rössing. Late-kinematic deformation, causing block rotation, overlying dome rotation and interaction of the more competent units of the Khan Formation with the Rössing Formation in the dome rim was pivotal in the localization of uranium-enriched granites within a highly fractured, high-strain zone that was also the site of prolonged/high fluid flux.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号