首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   6篇
  国内免费   34篇
地球物理   2篇
地质学   76篇
自然地理   1篇
  2024年   1篇
  2023年   2篇
  2022年   5篇
  2021年   2篇
  2020年   3篇
  2019年   4篇
  2018年   2篇
  2017年   2篇
  2016年   11篇
  2015年   1篇
  2014年   5篇
  2013年   7篇
  2012年   1篇
  2011年   2篇
  2010年   3篇
  2009年   6篇
  2008年   4篇
  2007年   6篇
  2006年   3篇
  2005年   4篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
排序方式: 共有79条查询结果,搜索用时 171 毫秒
1.
Eclogite-facies rocks within the Bergen Arcs, western Norway, have formed from granulites along shear zones and fluid pathways. Garnets that were inherited from granulite facies protoliths show different types of replacement patterns due to an incomplete eclogitisation process including concentric rim zoning, zoning along vein fillings and inclusion trails, and zoning bands without inclusions. The interfacial part between the granulitic core and the eclogitic rim of garnet as well as the microstructure of other relevant minerals (omphacite, plagioclase) has been analysed using analytical transmission electron microscopy (ATEM). In garnet, the interface is characterised by gradual changes in composition from Xalm=0.31, Xpyr=0.50 to Xalm=0.54, and Xpyr=0.25 within ≈20 μm and exhibits no distinct change in microstructure. Granulitic plagioclase shows exsolution lamellae of the Bøggild intergrowth. In omphacite, anti-phase domains (APDs) which potentially record the temperature of cation ordering after mineral growth have been observed and their size suggest eclogitisation at 600–700 °C. The electron backscatter diffraction (EBSD) analysis revealed that the lattice orientation of the granulitic feldspar is basically unrelated to tectonic axes whereas newly formed eclogitic minerals omphacite and kyanite show a crystallographic relation to the foliation. In garnet, no change in the basic crystallographic orientation between the eclogitic and granulitic garnet composition was confirmed. However, misorientation analysis suggests a cellular microstructure not more than 1° misorientation in the core of the garnets, which is missing in the eclogitic rim indicating textural equilibration of the latter. The heterogeneous replacement patterns are characteristic for dissolution and re-precipitation reactions in an open system limited to fluid availability. The appearance of the compositional profile in garnet is interpreted as a diffusional re-equilibration step after the time-limited, fluid-mediated eclogitisation event that apparently obscured the initially sharp interface within the further retrograde metamorphic history.  相似文献   
2.
岩石电子背散射衍射(EBSD)组构分析及应用   总被引:18,自引:1,他引:17  
刘俊来  曹淑云  邹运鑫  宋志杰 《地质通报》2008,27(10):1638-1645
电子背散射衍射(EBSD)技术是现代构造地质学与显微构造分析领域一项崭新的技术,它与现代高分辨率扫描电子显微镜和能谱分析设备结合,可以对块状样品中微米或纳米级尺度的颗粒进行晶体结构分析, 从而使微观结构、微区成分与结晶学数据结合起来,能够更精细地对比研究矿物和岩石显微构造,为岩石显微构造分析开辟了一个全新的领域。分析了EBSD技术的基本原理、系统构成、样品制备和工作程序。介绍了石英组构测量,极细粒物质(微角砾岩)的组构特点,二轴晶矿物(角闪石)的组构、变形机制和金属硫化物组构分析的应用实例,对于应用EBSD系统开展研究存在的一些问题进行了讨论。  相似文献   
3.
The behaviour of quartz during metamorphism is studied based on two case studies from the Barrovian terrains of Sulitjelma in arctic Scandinavia and Loch Tay in the Central Highlands Dalradian of Scotland. Both terrains preserve evidence for metamorphism in pelites involving nucleation and growth of garnet at different times in the deformation history. Data are presented on the size, shape and crystallographic orientation of quartz preserved as inclusions in garnet and as grains in the surrounding matrix. While quartz-grains remain small and dispersed between mica grains, deformation appears to be dominated by grain-boundary sliding accommodated by dissolution–precipitation. At amphibolite facies, textural coarsening occurs by dissolution of small quartz grains and growth of larger quartz grains, coupled with segregation of quartz from mica. As a result, quartz deforms by dislocation creep, developing crystallographic preferred orientations (CPO) consistent with both coaxial and non-coaxial strain. Quartz CPOs with <0001> axes lying parallel to foliation and stretching direction are commonly developed, and best explained by mechanical rotation of inequant (detrital?) quartz grains. There is no evidence for selective entrapment of quartz inclusions in garnet on the basis of quartz crystallographic orientation.  相似文献   
4.
Effects of dynamic recrystallization on lattice preferred orientation (LPO) in olivine were investigated through the combination of two SEM-based techniques, electron backscattered diffraction (EBSD) technique for crystallographic orientation measurement and backscattered electron imaging (BEI) for dislocation observation. Samples are experimentally deformed olivine aggregates in simple shear geometry. In the sample deformed at T=1473 K and high stresses (480 MPa), only incipient dynamic recrystallization is observed along grain-boundaries. Orientations of these small recrystallized grains are more random than that of relict grains, suggesting an important role of grain-boundary sliding at this stage of recrystallization. In the sample deformed at T=1573 K and low stress (160 MPa), dynamic recrystallization is nearly complete and the LPO is characterized by two [100] peaks. One peak is located at the orientation subparallel to the shear direction and is dominated by grains with high Schmid factor. The other occurs at high angles to the shear direction and is due to the contribution from grains with low Schmid factor. Grains with high Schmid factor tend to have higher dislocation densities than those with low Schmid factor. Based on these observations, we identify two mechanisms by which dynamic recrystallization affects LPO: (1) enhancement of grain-boundary sliding due to grain-size reduction, leading to the modification of LPO caused by the relaxation of constraint for deformation; (2) grain-boundary migration by which grains with lower dislocation densities grow at the expense of grains with higher dislocation densities. Based on the deformation mechanism maps and stress versus recrystallized grain-size relation, we suggest that the first mechanism always plays an important role whereas the second mechanism has an important effect only under limited conditions.  相似文献   
5.
The microstructure of a quartzite experimentally deformed and partially recrystallised at 900 °C, 1.2 GPa confining pressure and strain rate 10−6/s was investigated using orientation contrast and electron backscatter diffraction (EBSD). Boundaries between misoriented domains (grains or subgrains) were determined by image analysis of orientation contrast images. In each domain, EBSD measurements gave the complete quartz lattice orientation and enabled calculation of misorientation angles across every domain boundary. Results are analysed in terms of the boundary density, which for any range of misorientations is the boundary length for that range divided by image area. This allows a more direct comparison of misorientation statistics between different parts of a sample than does a treatment in terms of boundary number.The strain in the quartzite sample is heterogeneous. A 100×150 μm low-strain partially recrystallised subarea C was compared with a high-strain completely recrystallised subarea E. The density of high-angle (>10°) boundaries in E is roughly double that in C, reflecting the greater degree of recrystallisation. Low-angle boundaries in C and E are produced by subgrain rotation. In the low-angle range 0–10° boundary densities in both C and E show an exponential decrease with increasing misorientation. The densities scale with exp(−θ/λ) where λ is approximately 2° in C and 1° in E; in other words, E has a comparative dearth of boundaries in the 8–10° range. We explain this dearth in terms of mobile high-angle boundaries sweeping through and consuming low-angle boundaries as the latter increase misorientation through time. In E, the density of high-angle boundaries is larger than in C, so this sweeping would have been more efficient and could explain the relative paucity of 8–10° boundaries.The boundary density can be generalised to a directional property that gives the degree of anisotropy of the boundary network and its preferred orientation. Despite the imposed strain, the analysed samples show that boundaries are not, on average, strongly aligned. This is a function of the strong sinuosity of high-angle boundaries, caused by grain boundary migration. Low-angle boundaries might be expected, on average, to be aligned in relation to imposed strain but this is not found.Boundary densities and their generalisation in terms of directional properties provide objective measures of microstructure. In this study the patterns they show are interpreted in terms of combined subgrain rotation and migration recrystallisation, but it may be that other microstructural processes give distinctive patterns when analysed in this fashion.  相似文献   
6.
Shape, size and orientation measurements of quartz grains sampled along two transects that cross zones of increasing metamorphic grade in the Otago Schist, New Zealand, reveal the role of quartz in the progressive development of metamorphic foliation. Sedimentary compaction and diagenesis contributed little to the formation of a shape‐preferred orientation (SPO) within the analysed samples. Metamorphic foliation was initiated at sub‐greenschist facies conditions as part of a composite S1‐bedding structure parallel to the axial planes of tight to isoclinal F1 folds. An important component of this foliation is a pronounced quartz SPO that formed dominantly by the effect of dissolution–precipitation creep on detrital grains in association with F1 strain. With increasing grade, the following trends are evident from the SPO data: (i) a progressive increase in the aspect ratio of grains in sections parallel to lineation, and the development of blade‐shaped grains; (ii) the early development of a strong shape preferred orientation so that blade lengths define the linear aspect of the foliation (lineation) and the intermediate axes of the blades define a partial girdle about the lineation; (iii) a slight thinning and reduction in volume of grains in the one transect; and (iv) an actual increase in thickness and volume in the survivor grains of the second transect. The highest‐grade samples, within the chlorite zone of the greenschist facies, record segregation into quartz‐ and mica‐rich layers. This segregation resulted largely from F2 crenulation and marks a key change in the distribution, deformation and SPO of the quartz grains. The contribution of quartz SPO to defining the foliation lessens as the previously discrete and aligned detrital quartz grains are replaced by aggregates and layers of dynamically recrystallized quartz grains of reduced aspect ratio and reduced alignment. Pressure solution now affects the margins of quartz‐rich layers rather than individual grains. In higher‐grade samples, therefore, the rock structure is characterized increasingly by segregation layering parallel to a foliation defined predominantly by mica SPO.  相似文献   
7.
The development of subgrain boundary misorientations with strain in dry, synthetic NaCl polycrystals, deformed at elevated temperature, has been investigated using electron backscattered diffraction (EBSD). At low natural strains, up to 0.5, average misorientations of subgrain boundaries increase with strain and a power law relationship exists between strain and average misorientations. The average misorientations are strongly influenced by grain orientation, suggesting that the misorientation–strain relationship may also be texture dependent in materials with high plastic anisotropy, like NaCl. A slight grain size dependency of the average misorientations was observed. The results indicate that with suitable calibration, average subgrain boundary misorientations may offer a method for estimating the strain accommodated by dislocation creep in NaCl and thus perhaps in other geological materials, although current theories for polycrystalline plasticity imply that misorientations may also depend on stress in some situations.  相似文献   
8.
Elongate and deformed garnets from Glenelg, NW Scotland, occurwithin a thin shear zone transecting an eclogite body that hasundergone partial retrogression to amphibolite facies at circa700°C. Optical microscopy, back-scattered electron imaging,electron probe microanalysis and electron back-scatter diffractionreveal garnet sub-structures that are developed as a functionof strain. Subgrains with low-angle misorientation boundariesoccur at low strain and garnet orientations are dispersed, aroundrational crystallographic axes, across these boundaries. Towardshigh-strain areas, boundary misorientations increase and thereis a loss of crystallographic control on misorientations, whichtend towards random. In high-strain areas, a polygonal garnetmicrostructure is developed. The garnet orientations are randomlydispersed around the original single-crystal orientation. Somegarnet grains are elongate and Ca-rich garnet occurs on thefaces of elongate grains oriented normal to the foliation. Commonly,the garnet grains are admixed with matrix minerals, and, wherein contact with other phases, garnet is well faceted. We suggestthat individual garnet porphyroclasts record an evolution fromlow-strain conditions, where dislocation creep and recoveryaccommodated deformation, through increasing strain, where dynamicrecrystallization occurred by subgrain rotation, to higheststrains, where recrystallized grains were able to deform bydiffusion creep assisted grain boundary sliding with associatedrotations. KEY WORDS: diffusion creep; EBSD; garnet; plastic deformation; recrystallization  相似文献   
9.
Deformation of middle crustal shear zones likely varies with time as a result of the stress build-up and release associated with earthquakes and post-seismic deformation, but the processes involved and their microstructural signature in the rock record are poorly understood. We conducted a series of experiments on quartzite at 900 °C to characterize microstructures associated with changes in stress and strain rate, and to investigate the feasibility of carrying out grain size piezometry in natural rocks that experienced analogous changes. Differential stress (referred to simply as “stress”) was varied in two-stage experiments by changing strain rate and by stopping the motor and allowing stress to relax. The two-stage samples preserve a microstructural record that can be interpreted quantitatively in terms of stress history. The microstructure associated with a stress increase is a bimodal distribution of recrystallized grain sizes. The smaller grains associated with the second deformation stage accurately record the stress of the second stage, and the surviving coarse grains remain similar in size to those formed during the earlier stage. The transient microstructure associated with stress decrease is a “partial foam” texture containing a larger concentration of stable 120° triple junctions than occur in samples deformed at a relatively constant strain rate. Our results indicate that microstructures preserved in rocks that experienced relatively simple, two-stage deformation histories can be used to quantitatively assess stress histories.Grain growth rates during deformation are similar to rates observed in previous isostatic growth experiments, supporting theoretical approaches to recrystallized grain size, such as the wattmeter theory (Austin and Evans, 2007), that incorporate static growth rates. From an analysis of the experimental data for quartz recrystallized grain size, we find: 1) Recrystallized grain size quickly reaches a value consistent with ambient deformation conditions. We argue that this explains a good match between average grain sizes predicted by the wattmeter after complete recrystallization and the recrystallized grain sizes of the experiments. 2) The present formulation of the wattmeter overestimates the rates at which porphyroclasts recrystallize by as much as an order of magnitude, and 3) owing to problems with extrapolation of grain growth data for quartz, the wattmeter is not presently applicable to natural samples deformed at low temperatures. We present a simplified flow law for quartz, and suggest that the change in slope of the quartz piezometer at high stress (regime 1) is related to a switch to a linear viscous rheology.  相似文献   
10.
蔡佳任  张均  赵凝力 《地质论评》2016,62(S1):289-290
黔东南虎盆金矿区处于杨子陆块与江南造山带的过渡地带,偏江南造山带一侧,区域性北东向稳江背斜北西翼,是黔东南地区典型的石英脉型金矿床。长期以来黔东南地区是否存在剪切带构造及其与金成矿的关系一直存在争议(卢焕章等,2005;陶平等,2011),直接影响到该地区金矿的找矿工作方向。因此,黔东南地区剪切带构造的厘定对于完善该地区成矿模式研究具有重要意义。本文在充分总结虎盆矿床地质特征的基础上,利用宏观构造研究和显微构造研究及电子背散射衍射技术(EBSD)技术,首次厘定了虎盆含金剪切带,并探讨其与金成矿之间的关系及矿床成矿动力学背景,并结合区域成矿作用探讨区域找矿意义。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号