首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
地球物理   16篇
地质学   2篇
  2021年   3篇
  2019年   1篇
  2010年   1篇
  2008年   3篇
  2006年   4篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2000年   1篇
排序方式: 共有18条查询结果,搜索用时 481 毫秒
1.
Nature can provide analogues for post‐mining landscapes in terms of landscape stability and also in terms of the rehabilitated structure ‘blending in’ with the surrounding undisturbed landscape. In soil‐mantled landscapes, hillslopes typically have a characteristic pro?le that has a convex upper hillslope pro?le with a concave pro?le lower down the slope. In this paper hillslope characteristic form is derived using the area–slope relationship from pre‐mining topography at two sites in Western Australia. Using this relationship, concave hillslope pro?les are constructed and compared to linear hillslopes in terms of sediment loss using the SIBERIA erosion model. It is found that concave hillslopes can reduce sediment loss by up to ?ve times that of linear slopes. Concave slopes can therefore provide an alternative method for the construction of post‐mining landscapes. An understanding of landscape geomorphological properties and the use of erosion models can greatly assist in the design of post‐mining landscapes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
2.
The variability of hillslope form and function is examined experimentally using a simple model catchment in which most landscape development parameters are either known or controlled. It is demonstrated that there is considerable variability in sediment output from similar catchments, subjected to the same hydrological processes, and for which the initial hillslope profiles are the same. The results demonstrate that, in the case of catchments with a linear initial hillslope profile, the sediment output is initially high but reduces through time, whereas for a concave initial profile the sediment output was smaller and relatively constant. Concave hillslope profiles also displayed reduced sediment output when compared with linear slopes with the same overall slope. Using this experimental model catchment data, the SIBERIA landscape evolution model was tested for its ability to predict temporal sediment transport. When calibrated for the rainfall and erodible material, SIBERIA is able to simulate mean temporal sediment output for the experimental catchment over a range of hillslope profiles and rainfall intensities. SIBERIA is also able to match the hillslope profile of the experimental catchments. The results of the study provide confidence in the ability of SIBERIA to predict temporal sediment output. The experimental and modelling data also demonstrate that, even with all geomorphic and hydrological variables being known and/or controlled, there is still a need for long‐term stream gauging to obtain reliable assessments of field catchment hydrology and sediment transport. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
3.
Field measurement and modelling of soil erosion provides insights into landscape systems as well as the potential for enhanced landscape management. There are a number of field and numerical methods by which soil erosion and deposition can be quantified. Here we examine the capability of the SIBERIA landscape evolution model to quantify short-term erosion and deposition on a well-managed cattle grazing landscape on the east coast of Australia. The model is calibrated by two methods (1) a geomorphological approach using a site digital elevation model (DEM) and soil data and (2) a laboratory-scale flume. The two calibration processes resulted in similar model input parameters and estimated erosion rates of 3.1 t ha−1 year−1 and 4.4 t ha−1 year−1, respectively. These were found to closely match erosion rates estimated using the environmental tracer 137Cs (2.7–4.8 t ha−1 year−1). However, erosion and deposition estimated at individual points along the hillslope was not well correlated with 137Cs at the same position due to the temporal averaging of the model and microtopography. Sensitivity analysis showed the model was more sensitive to parameterisation than sub-DEM-scale topography. This places confidence in the model's ability to estimate erosion and deposition across an entire hillslope and catchment on decadal time scales. We also highlight the robustness and flexibility of the calibration methods.  相似文献   
4.
Computer-based landscape evolution models offer the ability to evaluate landscape stability over the short (annual), medium (decades to hundreds of years) and long-term (thousands of years). Modeling has advantages in that design ideas can be tested, different surface material properties can be evaluated and risk analysis carried out. Landscape evolution models allow landscape surface change through time. These models also offer the advantage that the landscape can be evaluated visually as it develops through time, which is not possible with other types of models. Landscape evolution models can be used for not only soil loss assessment (i.e. tonnes/hectare/year), but also to evaluate the method of soil loss (i.e. rill or interrill erosion). This study examines a range of waste rock dump designs for the Minera Alumbrera Ltd. copper mine, Argentina. An erosion assessment using the SIBERIA erosion model over a 1000-year simulation period demonstrates waste rock dump designs using a conventional stepped design of backsloping benches and caps with angle of repose slopes provide the lowest average erosion rates and depths of incision than do other designs. Caution should be applied in interpreting these results as the SIBERIA erosion model is sensitive to parameter input and in this case was calibrated and run using a generic set of parameters that are not site specific. Nevertheless, the results provide a guide as to the strengths and weaknesses of different rehabilitation designs and demonstrate the insights that modeling studies can provide.  相似文献   
5.
The SIBERIA landscape evolution model was used to simulate the geomorphic development of the Tin Camp Creek natural catchment over geological time. Measured hydrology, erosion and geomorphic data were used to calibrate the SIBERIA model, which was then used to make independent predictions of the landform geomorphology of the study site. The catchment, located in the Northern Territory, Australia is relatively untouched by Europeans so the hydrological and erosion processes that shaped the area can be assumed to be the same today as they have been in the past, subject to the caveats regarding long‐term climate fluctuation. A qualitative, or visual comparison between the natural and simulated catchments indicates that SIBERIA can match hillslope length and hillslope profile of the natural catchments. A comparison of geomorphic and hydrological statistics such as the hypsometric curve, width function, cumulative area distribution and area–slope relationship indicates that SIBERIA can model the geomorphology of the selected Tin Camp Creek catchments. Copyright 2002 © Environmental Research Institute of the Supervising Scientist, Commonwealth of Australia.  相似文献   
6.
The assessment of post‐mining landscapes as case studies is an important part of the evaluation of current rehabilitation practices. A necessary part of this assessment is to predict the surface stability of the landform using erosion and landform evolution modelling techniques. In the short term, erosion on a rehabilitated mine site can lead to increased sediment loads and transport of other mine related contaminants in downstream waterways. It is well recognized that in many mine areas the erodibility of surface materials can, and does, vary. This is a particularly significant issue on mine sites, where the surface conditions may range from areas of undisturbed natural surface materials, waste rock dumps constructed with materials exhumed from the sub‐surface, and other areas that have a mix of waste rock and soil to enhance the growth of vegetation. A further significant issue is that when the subsurface materials are exposed to surface conditions they can weather rapidly, changing their erodibility. This paper uses a new version of the SIBERIA landscape evolution and soil erosion model to evaluate the former Nabarlek uranium mine site in the Northern Territory, Australia. This new version of SIBERIA uses spatially variable erosion and hydrology parameters across the study domain to represent different erodibilities of surface materials, thus allowing better representation of catchment heterogeneity. The results demonstrate that the model predicts erosion rates similar to that of other modelled results and independent field data, providing confidence in the model and its parameterization. The tailings, deposited in the mined out pit and capped with waste rock, appear to be safely encapsulated for the modelled period. Copyright © 2008 John Wiley & Sons, Ltd and Commonwealth of Australia (Department of the Environment and Water Resources Supervising Scientist).  相似文献   
7.
Excessive soil erosion and deposition is recognised as a significant land degradation issue. Quantifying soil erosion and deposition is a non-trivial task. One of these methods has been the mathematical modelling of soil erosion and deposition patterns and the processes that drive them. Here we examine the capability of a landscape evolution model to predict both soil erosion rate and pattern of erosion and deposition. This numerical model (SIBERIA) uses a Digital Elevation Model (DEM) to represent the landscape and calculates erosion and deposition at each grid point in the DEM. To assess field soil redistribution rates (SRR) and patterns the distribution of the environmental tracer 137Cs has been analysed. Net hill slope SRR predicted by SIBERIA (a soil loss rate of 1.7 to 4.3 t ha-1 yr-1) were found to be in good agreement with 137Cs based estimates (2.1 – 3.4 t ha-1 yr-1) providing confidence in the predictive ability of the model at the hillslope scale. However some differences in predicted erosion/deposition patterns were noted due to historical changes in landscape form (i.e. the addition of a contour bank) and possible causes discussed, as is the finding that soil erosion rates are an order of magnitude higher than likely soil production rates. The finding that SIBERIA can approximate independently quantified erosion and deposition patterns and rates is encouraging, providing confidence in the employment of DEM based models to quantify hillslope erosion rates and demonstrating the potential to upscale for the prediction of whole catchment erosion and deposition. The findings of this study suggest that LEMs can be a reliable alternative to complex and time consuming methods such as that using environmental tracers for the determination of erosion rates. The model and approach demonstrates a new approach to assessing soil erosion that can be employed elsewhere. © 2018 John Wiley & Sons, Ltd.  相似文献   
8.
9.
The use of landscape evolution models in mining rehabilitation design   总被引:1,自引:0,他引:1  
Landscape evolution models can be useful tools for the evaluation of rehabilitation designs for post-mining landscapes. When calibrated for the erodible material, landscape evolution models can predict sediment loss over entire landscapes (i.e. tonnes/hectare/year), method of erosion (i.e. slope wash, gullying) and also where on a hillslope erosion is likely to occur. The models provide the ability to examine simple hillslopes through to complex whole landscapes. These models can also be used for a probabilistic risk assessment of rehabilitation design for high-risk situations such as tailings dams. Importantly, unlike other erosion models they allow the eroded landscape to be visualised. This paper outlines the capabilities of the SIBERIA landscape evolution model for the rehabilitation of mining landscapes and proposes a probabilistic approach for risk assessment and site stability.  相似文献   
10.
The process of rill erosion causes significant amounts of sediment to be moved in both undisturbed and disturbed environments and can be a significant issue for agriculture as well as mining lands. Rills also often develop very quickly (from a single rainfall event to a season) and can develop into gullies if sufficient runoff is available to continue their development. This study examines the ability of a terrestrial laser scanner to quantify rills that have developed on fresh and homogeneous mine spoil on an angle of repose slope. It also examines the ability of the SIBERIA erosion model to simulate the rill's spatial and temporal behaviour. While there has been considerable work done examining rill erosion on rehabilitated mine sites and agricultural fields, little work has been done to examine rill development at angle of repose sites. Results show that while the overall hillslope morphology was captured by the laser scanner, with the morphology of the rills being broadly captured, the characteristics of the rills were not well defined. The digital elevation model created by the laser scanner failed to capture the rill thalwegs and tops of the banks, therefore delineating a series of ill defined longitudinal downslope depressions. These results demonstrate that an even greater density of points is needed to capture sufficient rill morphology. Nevertheless, SIBERIA simulations of the hillslope demonstrated that the model was able to capture rill behaviour in both space and time when correct model parameters were used. This result provides confidence in the SIBERIA model and its parameterization. The results demonstrate the sensitivity of the model to changes in parameters and the importance of the calibration process. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号