首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   535篇
  免费   26篇
  国内免费   32篇
测绘学   9篇
大气科学   280篇
地球物理   52篇
地质学   51篇
海洋学   11篇
天文学   15篇
综合类   7篇
自然地理   168篇
  2024年   1篇
  2023年   10篇
  2022年   34篇
  2021年   27篇
  2020年   21篇
  2019年   36篇
  2018年   36篇
  2017年   24篇
  2016年   38篇
  2015年   19篇
  2014年   29篇
  2013年   105篇
  2012年   25篇
  2011年   20篇
  2010年   7篇
  2009年   17篇
  2008年   16篇
  2007年   15篇
  2006年   14篇
  2005年   6篇
  2004年   12篇
  2003年   10篇
  2002年   11篇
  2001年   14篇
  2000年   5篇
  1999年   3篇
  1998年   9篇
  1997年   4篇
  1996年   5篇
  1995年   7篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1985年   2篇
排序方式: 共有593条查询结果,搜索用时 29 毫秒
1.
There is a growing concern with the impact of marine operations on the environment. This requires reducing fuel consumption and vessel pollution during operation. On-board computers and satellite communications will enable the operator to reduce fuel consumption and NOX emissions during vessel operations.This paper presents the results of a study on this problem and how such an on-board system could be implemented to reduce fuel consumption and engine NOX emissions.  相似文献   
2.
As a legacy of the centrally planned economy, the economies in transition of Central and Eastern Europe (CEE) have a unique potential to reduce their greenhouse gas emissions through the improvement in their high energy intensities. Since much of this `low-hanging fruit' in energy-efficiency improvements can be highly cost-effective, many developed countries facing difficulties in meeting their greenhouse gas (GHG) emission targets domestically are eager to find such opportunities in the CEE region. Therefore, studies analysing the potentials and costs of carbon dioxide reduction through technology improvement in the region have come into the limelight. While there are a few excellent studies in the region aimed at analysing climate change abatement potentials, they all embark on different assumptions, methodologies and boundary conditions. It is hence difficult, if not impossible, to compare and analyse the results of these studies across different authors, countries or time horizons. Consequently, the purpose of this paper is to place four leading studies on GHG mitigation through technology improvement from the CEE region into an internationally comparable framework. Four studies were selected from three countries, Poland, Hungary and Estonia, which are all the results of major national and international efforts to assess costs and potentials of GHG reduction. The paper places their assumptions, methods and final results into a framework which enables policy-makers and project designers to compare these across geographical and technological boundaries. Since other studies from around the globe have been analysed in this framework in the literature, this paper provides a vehicle for the findings of these four studies to be compared to others worldwide. In addition, the paper highlights a few areas where similar studies to be completed in the future in the region may be enhanced by incorporating features used in GHG mitigation research in other parts of the world. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
3.
An eddy covariance (EC) station was deployed at Solfatara crater, Italy, June 8–25, 2001 to assess if EC could reliably monitor CO2 fluxes continuously at this site. Deployment at six different locations within the crater allowed areas of focused gas venting to be variably included in the measured flux. Turbulent (EC) fluxes calculated in 30-min averages varied between 950 and 4460 g CO2 m−2 d−1; the highest measurements were made downwind of degassing pools. Comparing turbulent fluxes with chamber measurements of surface fluxes using footprint models in diffuse degassing regions yielded an average difference of 0% (±4%), indicating that EC measurements are representative of surface fluxes at this volcanic site. Similar comparisons made downwind of degassing pools yielded emission rates from 12 to 27 t CO2 d−1 for these features. Reliable EC measurements (i.e. measurements with sufficient and stationary turbulence) were obtained primarily during daytime hours (08:00 and 20:00 local time) when the wind speed exceeded 2 m s−1. Daily average EC fluxes varied by ±50% and variations were likely correlated to changes in atmospheric pressure. Variations in CO2 emissions due to volcanic processes at depth would have to be on the same order of magnitude as the measured diurnal variability in order to be useful in predicting volcanic hazard. First-order models of magma emplacement suggest that emissions could exceed this rate for reasonable assumptions of magma movement. EC therefore provides a useful method of monitoring volcanic hazard at Solfatara. Further, EC can monitor significantly larger areas than can be monitored by previous methods.  相似文献   
4.
Large carbon dioxide plumes with concentrations up to 45 ppm aboveambient levels were measured about 15 km downwind of the Prudhoe Bay, Alaskamajor oil production facilities, located at 70° N Lat. above the ArcticCircle. The measured emissions were 1.3 × 103 metrictons (C) hour-1 (11.4× 106 metric tons(C) year-1), six times greater than the combustion emissionsassumed by Jaffe and coworkers in J. Atmos. Chem. 20 (1995), 213–227,based on 1989 reported Prudhoe Bay oil facility fuel consumption data, andfour times greater than the total C emissions reported by the oil facilitiesfor the same months as the measurement time periods. Variations in theemissions were estimated by extrapolating the observed emissions at a singlealtitude for all tundra research transect flights conducted downwind of theoil fields. These 30 flights yielded an average emission rate of1.02 × 103 metric tons (C) hour-1 with astandard deviation of 0.33 × 103. These quantity ofemissions are roughly equivalent to the carbon dioxide emissions of7–10 million hectares of arctic tussock tundra (Oechel and Vourlitis,Trends in Ecol. Evolution 9 (1994), 324–329).  相似文献   
5.
6.
7.
胡志强  苗长虹  袁丰 《地理学报》2019,74(10):2045-2061
集聚外部性是集聚影响工业污染排放的重要机制,不同的集聚空间组织型式具有不同的污染排放行为和减排效果。以中国285个地市工业SO2排放为例,依据集聚经济理论,将集聚空间组织型式细分为集聚密度、企业地理临近度、专业化、多样性、相关多样性、非相关多样性等不同类型,在系统分析工业SO2排放与集聚空间格局的基础上,通过构建计量经济模型,考察了不同集聚空间组织型式对工业SO2排放强度的影响。结果表明:① 工业SO2排放强度与工业集聚密度在空间上具有非对称性,污染排放强度西高东低,工业集聚密度、企业地理临近、多样性、相关和非相关多样性为东中高西部低;② 工业集聚对工业SO2排放强度的影响存在空间溢出效应,相邻地区集聚密度、多样性和相关多样性水平的上升有利于本区域工业污染排放强度的下降,但专业化水平的上升则会提升本区域的工业污染排放强度;③ 提高集聚密度、引导企业集中布局有利于工业SO2排放强度下降,多样且关联的产业组织结构有利于污染减排,而专业化和非关联产业的集中会提高污染排放强度;④ 集聚型式对工业SO2排放强度的影响存在区域和城市规模上的异质性,集聚密度、企业地理临近、多样性和相关多样性对中西部污染减排的作用比东部明显,专业化和非相关多样性不利于东中部地区的污染减排;城区人口规模20万以下的小城市提高集聚密度、减少多样性特别是非相关多样性更有利于污染减排;城区人口规模20~50万的小城市和50~100万的中等城市,提高企业的地理接近度和多样性水平特别是相关多样性水平,有利于其降低污染排放强度;城区人口规模在100万以上的大城市,提高集聚密度和产业多样性水平在一定程度上有利于其污染减排,但其减排效果因拥挤效应而明显下降;⑤ 进一步降低工业SO2排放强度,需要走集聚化道路,坚持提高集聚密度,因地制宜引导企业集中布局,着力提高产业在关联基础上的多样性水平,加强区域间联防联控,重视区域间的产业联系与环保合作。  相似文献   
8.
This article illustrates the main difficulties encountered in the preparation of GHG emission projections and climate change mitigation policies and measures (P&M) for Kazakhstan. Difficulties in representing the system with an economic model have been overcome by representing the energy system with a technical-economic growth model (MARKAL-TIMES) based on the stock of existing plants, transformation processes, and end-use devices. GHG emission scenarios depend mainly on the pace of transition in Kazakhstan from a planned economy to a market economy. Three scenarios are portrayed: an incomplete transition, a fast and successful one, and even more advanced participation in global climate change mitigation, including participation in some emission trading schemes. If the transition to a market economy is completed by 2020, P&M already adopted may reduce emissions of CO2 from combustion by about 85 MtCO2 by 2030 – 17% of the emissions in the baseline (WOM) scenario. One-third of these reductions are likely to be obtained from the demand sectors, and two-thirds from the supply sectors. If every tonne of CO2 not emitted is valued up to US$10 in 2020 and $20 in 2030, additional P&M may further reduce emissions by 110 MtCO2 by 2030.  相似文献   
9.
Four policies might close the gap between the global GHG emissions expected for 2020 on the basis of current (2013) policies and the reduced emissions that will be needed if the long-term global temperature increase can be kept below the 2 °C internationally agreed limit. The four policies are (1) specific energy efficiency measures, (2) closure of the least-efficient coal-fired power plants, (3) minimizing methane emissions from upstream oil and gas production, and (4) accelerating the (partial) phase-out of subsidies to fossil-fuel consumption. In this article we test the hypothesis of the International Energy Agency (IEA) that these policies will not result in a loss of gross domestic product (GDP) and we estimate their employment effects using the E3MG global macro-econometric model. Using a set of scenarios we assess each policy individually and then consider the outcomes if all four policies were implemented simultaneously. We find that the policies are insufficient to close the emissions gap, with an overall emission reduction that is 30% less than that found by the IEA. World GDP is 0.5% higher in 2020, with about 6 million net jobs created by 2020 and unemployment reduced.

Policy relevance

The gap between GHG emissions expected under the Copenhagen and Cancun Agreements and that needed for emissions trajectories to have a reasonable chance of reaching the 2 °C target requires additional policies if it is to be closed. This article uses a global simulation model E3MG to analyse a set of policies proposed by the IEA to close the gap and assesses their macroeconomic effects as well as their feasibility in closing the gap. It complements the IEA assessment by estimating the GDP and employment implications separately by the different policies year by year to 2020, by major industries, and by 21 world regions.  相似文献   

10.
As the two large developing and populous countries, China and India face the dual challenges of economic development and climate change. Both of them are active in carbon emissions reduction, while India also bears the pressure of being “benchmarked” against China. With taking China and India as the sample of a comparative analysis, and the statistical value of a long sequence as the basic analysis data, based on the detailed analysis and comparison of carbon emissions history, the carbon emissions situation of the two countries from various dimensions including economic development, energy reserves and consumption, etc. were comparatively analyzed. The carbon intensity and energy structure after achieving the objectives were measured and compared by focusing on the carbon emissions reduction targets in China and India. The comparative results show that: China’s total carbon emissions are greater than India’s, but the growth rate of emissions, per capita emissions are significantly lower than India’s, while the carbon intensity decreases significantly faster than that of India. China has taken more efforts to make commitments to carbon reduction than India. With India’s energy structure adjustment, the situation will be gradually better than that in China.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号