首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   5篇
  国内免费   6篇
大气科学   14篇
海洋学   2篇
  2023年   1篇
  2022年   1篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2012年   3篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2001年   1篇
  2000年   1篇
排序方式: 共有16条查询结果,搜索用时 31 毫秒
1.
壳聚糖及其衍生物在水处理中的应用   总被引:3,自引:0,他引:3       下载免费PDF全文
壳聚糖(Chitosan)是甲壳素(Chitin)的脱乙酰化产物,本身为线型分子,分子链中含有反应性基团羟基(-OH)和氨基(-NH2)。在酸性溶液中,由于-OH和-NH2的存在,壳聚糖可形成高电荷密度的阳离子聚电解质,能够凝聚溶液中带负电的悬浊液、有机物  相似文献   
2.
利用以色列特拉维夫大学二维面对称分档云模式(two-dimensional slab-symmetric detailed spectral bin microphysical model of Tel Aviv University),对2016年9月4日16:00(北京时)前后我国华东地区的一次暖性浅对流云降水过程进行模拟,模式模拟的强回波中心高度和最大回波强度范围与观测基本一致。并在此基础上进行了小于1 μm的吸湿性核的播撒减雨试验,分别考虑了不同播撒时间、不同播撒高度以及不同播撒剂量的敏感性测试。结果表明:在云的发展阶段早期播撒能起到更好的减雨效果,播撒时间越早对大粒子生长过程的抑制作用越强,随着播撒时间向后推移,受抑制作用最显著的粒径段向小粒径端偏移;在云中心过饱和度大的区域下方进行播撒,减雨效果更加明显,当播撒剂量为350 cm-3时,地面累积降水量减少率可达23.3%;另外,随着播撒剂量的增加,减雨效果更加显著,甚至能达到消雨的效果。因此,在暖性浅对流云中合理地播撒小于1 μm的吸湿性核能达到较好的减雨或消雨效果。  相似文献   
3.
Reiking  RF Martner  BE 《气象科技》2001,29(1):51-54
引言近年来,借助于有显著改进的遥感及模拟的方法,天气研究和应用已经取得了很大进展。然而,人工影响天气的研究和应用已经到了需要抉择的重要关头。由于在流域范围内重要区域缺少使人信服的降水增加一致性的证据,这个领域或是将变成不再存在,并且当世界淡水危机是如此的严重以致不能不管时,只能等待未来几代人的努力才能解决,或是将实施战略研究,通过采用新技术进入现代主流来寻找保障继续发展的技术。为了更好地证明作为基础的假设并在应用中提供可能的产品,实施战略研究是很有必要的。然而,直到现在,除了孤立的研究计划以外,还没有涉及到…  相似文献   
4.
利用2014年7月在黄山光明顶观测的气溶胶吸湿性参数(κ)和气溶胶离子化学组分、有机碳(OC,organic carbon)数据,对多尺度气溶胶吸湿性参数进行分析,并在此基础上建立了多尺度κ的参数化方案。研究结果表明,影响黄山夏季气溶胶来源的主要气团包括西南气团、北方气团以及东南气团。黄山夏季κ的变化范围为0.2-0.48,且随粒径增大成先增大后减小的分布特征;气溶胶粒径在0.15-1.1 μm的强吸湿段,κ>0.3,而在粒径小于0.15 μm和粒径大于1.1 μm弱吸湿段,κκ分布不同,气溶胶粒子在小于1.1 μm的粒径段,当受西南气团影响时,κ值最大,而受东南气团影响时,κ值最小;在气溶胶粒径大于1.1 μm时,κ在两个气团背景下呈现与气溶胶粒径小于1.1 μm时相反的分布特征。影响粒径小于1.1 μm气溶胶吸湿能力的主要水溶性化学组分为NH4+、SO42-、水溶性有机碳(WSOC,water soluble organic carbon),而影响大于1.1 μm粒径范围气溶胶吸湿能力的主要水溶性化学组分为NH4+、SO42-、NO3-、WSOC和Ca2+。由气溶胶多尺度离子化学组分和WSOC构建的气溶胶κ的参数化方案,在小于1.1 μm和大于1.1 μm的粒径范围内的表达式分别为κreg=0.12+0.45fNH4++0.63fSO42-+0.18fWSOC和κreg=0.01+0.78fNH4++0.76fNO3-+0.8fSO42--0.28fCa2++0.14fWSOC(f为对应组分的质量份数)。两个参数化方案均能较好地预报κ,预报值κreg与κ的计算值间存在较好的相关关系,相关系数通过了置信度99%的显著性检验,且预报误差在30%范围内。   相似文献   
5.
三江源地区对流云吸湿性催化的数值模拟   总被引:3,自引:2,他引:1  
采用二维分档对流云模式,模拟研究了不同的云凝结核(CCN)背景下三江源地区对流云及其降水的发展,以及吸湿剂的催化效果。结果表明:该地区对流云以冰相过程为主,霰粒子在降水发展过程中具有支配性的作用;初始CCN数浓度增加使降水延迟、降水量减少;催化效果在初始CCN数浓度较高的环境下更好;在云发展的早期,于云底上升气流区播撒吸湿剂,能够获得较好的降水增加效果;对催化结果起决定作用的是粗粒子,小粒子对催化起到负作用。这些结果表明,在合理的催化方案下对该地区作吸湿性催化能得到较为理想的增雨效果。  相似文献   
6.
基于2016年冬季和2017年夏季在北京、2016年夏季在邢台的三次气溶胶外场观测实验,选取三次观测期间典型的新粒子生成事件,分析其对气溶胶吸湿和云凝结核(CCN)活化特性的影响。两地分别位于华北平原北部超大城市区域和中南部工业化区域,两地不同季节新粒子形成机制不同,对应的凝结汇、生长速率以及气溶胶化学组分也不同。北京站点新粒子生成事件的发生以有机物的生成主导,而邢台站点新粒子生成事件的发生则以硫酸盐和有机物的生成共同主导。邢台站点新粒子生成过程中气溶胶吸湿性及云凝结核活化能力明显强于北京站点,此特点在核模态尺度粒子中表现尤为明显。以上结果表明,在估算新粒子生成对CCN数浓度的影响时,应充分考虑气溶胶吸湿和活化特性的差异。  相似文献   
7.
党娟  苏正军  房文  方春刚 《气象科技》2017,45(2):398-404
在云雾中播撒吸湿性催化剂是进行暖云催化降水或消暖雾的重要手段之一,而寻找高效、适宜的吸湿性催化剂仍然是当前人工影响天气领域的重要研究目标。本研究对6种具有吸湿性的粉末型稀土盐催化剂在云室中的消暖雾性能进行了对比试验。试验采用一个43m3的暖云室,在云室中分别进行无催化的空白试验和6种催化剂的消暖雾催化试验,并使用FM-100雾滴谱仪、透光度仪以及温湿度仪等仪器对云室中雾的整个发展过程进行全程观测。通过对比空白试验与催化试验的观测数据,分析了5种吸湿性催化剂在播撒后对暖雾的影响,对它们的消雾效果和催化剂作用机理进行了分析。研究结果表明:6种催化剂中有5种起到了消雾作用,其中氯化铈、硝酸镧、碳酸镧的消雾效果较好,氯化镧、碳酸铈次之,硝酸铈则没有达到消雾目的;催化剂的引入使雾的含水量、雾滴有效直径、雾滴谱等微物理特征发生明显变化,并最终对雾的发展进程造成很大影响,使雾的消散速度加快或延缓。  相似文献   
8.
一次飞机播撒吸湿性焰剂试验的微物理探测浅析   总被引:2,自引:1,他引:1  
2011年夏季,北京市人工影响天气办公室组织了吸湿性焰剂的飞机播撒试验,选取八达岭长城西北的淡积云作为催化对象.试验期间,使用装备了云探测设备的运12飞机进行播撒及云微物理探测.在6月1日的试验中,运用差异化策略分别对不同的淡积云实施了催化,探测发现云中出现了符合暖云增雨概念模型的微物理反应.随后在晴空区实施了烟羽探测试验,通过在吸湿性焰剂烟羽区的穿刺飞行,获得了正在扩散的吸湿性焰剂的粒子谱,了解了播撒后扩散区的微物理特征.  相似文献   
9.
吸湿性物质催化云雨的研究进展   总被引:6,自引:2,他引:4       下载免费PDF全文
用氯化钙溶滴消暖雾已经70年了,后来细盐粒子或盐溶液也被用于催化暖云,希望它们在云中形成雨胚,启动或加速碰并过程以增加降水.20世纪60年代,飞机播撒盐粉、地面烧盐粉成为我国人工影响暖云的主要方法,普遍反映有增雨效果,由于当时条件限制,没有进行严格的科学验证;同时,因为实施中播撒剂量大,对飞机又有腐蚀而被搁置.十多年前南非在人工增雨中开发了产生吸湿性微粒的新型焰弹技术,用于暖性对流云催化,通过随机化试验取得了具有统计显著性的增雨效果,这一结果在墨西哥的试验中得到重复;另一方面,泰国一直使用粗吸湿性粒子催化暖积云,近年来的随机化试验也证明能增加降水,但是降水的增加是4 h后在被催化云的新生云中出现的.这些结果重新激起人们对暖云催化的兴趣,成为当前国际云雾物理和人工影响天气领域的热点问题之一.  相似文献   
10.
毕凯  王广河  毛节泰 《气象》2012,38(2):220-227
利用2009年上海浦东新区气象站高时间分辨率的能见度资料及其同步地面气象要素资料,在气块静力稳定的假设下研究了由于辐射冷却引起的霾或雾在演变的各阶段气溶胶吸湿性增长及其消光系数随相对湿度的变化,结果表明:气溶胶吸湿性增长率f(RH)随相对湿度的增长具有先慢后快平滑连续的特点;气溶胶吸湿性增长率在不同季节有所差异,在夏季和秋季较高,在冬季和春季时较低;平均而言,当相对湿度从40%增大到95%时,气溶胶吸湿性增长率可达6.6;对比国内外实验和观测结果,发现f(RH)随相对湿度的变化曲线与硫酸铵亲水增长相似;在这种雾消散时,随着气温的升高,测量给出的相对湿度值不会立即下降,而是在接近饱和的情况下维持一段时间,然后再迅速下降,其滞后大约为1~2小时。这很可能是测湿元件不能及时反映外界湿度变化所致。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号