首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5791篇
  免费   651篇
  国内免费   329篇
测绘学   1118篇
大气科学   291篇
地球物理   1089篇
地质学   1567篇
海洋学   1105篇
天文学   12篇
综合类   524篇
自然地理   1065篇
  2024年   10篇
  2023年   23篇
  2022年   84篇
  2021年   159篇
  2020年   189篇
  2019年   190篇
  2018年   158篇
  2017年   287篇
  2016年   228篇
  2015年   270篇
  2014年   341篇
  2013年   452篇
  2012年   342篇
  2011年   380篇
  2010年   324篇
  2009年   336篇
  2008年   389篇
  2007年   392篇
  2006年   377篇
  2005年   310篇
  2004年   256篇
  2003年   198篇
  2002年   211篇
  2001年   167篇
  2000年   119篇
  1999年   139篇
  1998年   83篇
  1997年   82篇
  1996年   43篇
  1995年   47篇
  1994年   36篇
  1993年   30篇
  1992年   20篇
  1991年   15篇
  1990年   16篇
  1989年   12篇
  1988年   17篇
  1987年   9篇
  1986年   4篇
  1985年   7篇
  1984年   9篇
  1983年   4篇
  1982年   3篇
  1981年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有6771条查询结果,搜索用时 108 毫秒
1.
Few long-term studies have explored how intensively managed short rotation forest plantations interact with climate variability. We examine how prolonged severe drought and forest operations affect runoff in 11 experimental catchments on private corporate forest land near Nacimiento in south central Chile over the period 2008–2019. The catchments (7.7–414 ha) contain forest plantations of exotic fast-growing species (Pinus radiata, Eucalyptus spp.) at various stages of growth in a Mediterranean climate (mean long-term annual rainfall = 1381 mm). Since 2010, a drought, unprecedented in recent history, has reduced rainfall at Nacimiento by 20%, relative to the long-term mean. Pre-drought runoff ratios were <0.2 under 8-year-old Eucalyptus; >0.4 under 21-year-old Radiata pine and >0.8 where herbicide treatments had controlled vegetation for 2 years in 38% of the catchment area. Early in the study period, clearcutting of Radiata pine (85%–95% of catchment area) increased streamflow by 150 mm as compared with the year before harvest, while clearcutting and partial cuts of Eucalyptus did not increase streamflow. During 2008–2019, the combination of emerging drought and forestry treatments (replanting with Eucalyptus after clearcutting of Radiata pine and Eucalyptus) reduced streamflow by 400–500 mm, and regeneration of previously herbicide-treated vegetation combined with growth of Eucalyptus plantations reduced streamflow by 1125 mm (87% of mean annual precipitation 2010–2019). These results from one of the most comprehensive forest catchment studies in the world on private industrial forest land indicate that multiple decades of forest management have reduced deep soil moisture reservoirs. This effect has been exacerbated by drought and conversion from Radiata pine to Eucalyptus, apparently largely eliminating subsurface supply to streamflow. The findings reveal tradeoffs between wood production and water supply, provide lessons for adapting forest management to the projected future drier climate in Chile, and underscore the need for continued experimental work in managed forest plantations.  相似文献   
2.
The 33 086 ha mixed land use Fall Creek watershed in upstate New York is part of the Great Lakes drainage system. Results from more than 3500 water samples are available in a data set that compiles flow data and measurements of various water quality analytes collected between 1972 and 1995 in all seasons and under all flow regimes in Fall Creek and its tributaries. Data is freely accessible at https://ecommons.cornell.edu/handle/1813/8148 and includes measurements of suspended solids, pH, alkalinity, calcium, magnesium, potassium, sodium, chloride, nitrate nitrogen (NO3-N), sulphate sulphur (SO4-S), phosphorus (P) fractions molybdate reactive P (MRP) and total dissolved P (TDP), percent P in sediment, and ammonium nitrogen (NH4-N). Methods, sub-watershed areas, and coordinates for sampling sites are also included. The work represented in this data set has made important scientific contributions to understanding of hydrological and biogeochemical processes that influence loading in mixed use watersheds and that have an impact on algal productivity in receiving water bodies. In addition, the work has been foundational for important regulatory and management decisions in the region.  相似文献   
3.
Soil water dynamics are central in linking and regulating natural cycles in ecohydrology, however, mathematical representation of soil water processes in models is challenging given the complexity of these interactions. To assess the impacts of soil water simulation approaches on various model outputs, the Soil and Water Assessment Tool was modified to accommodate an alternative soil water percolation method and tested at two geographically and climatically distinct, instrumented watersheds in the United States. Soil water was evaluated at the site scale via measured observations, and hydrologic and biophysical outputs were analysed at the watershed scale. Results demonstrated an improved Kling–Gupta Efficiency of up to 0.3 and a reduction in percent bias from 5 to 25% at the site scale, when soil water percolation was changed from a threshold, bucket-based approach to an alternative approach based on variable hydraulic conductivity. The primary difference between the approaches was attributed to the ability to simulate soil water content above field capacity for successive days; however, regardless of the approach, a lack of site-specific characterization of soil properties by the soils database at the site scale was found to severely limit the analysis. Differences in approach led to a regime shift in percolation from a few, high magnitude events to frequent, low magnitude events. At the watershed scale, the variable hydraulic conductivity-based approach reduced average annual percolation by 20–50 mm, directly impacting the water balance and subsequently biophysical predictions. For instance, annual denitrification increased by 14–24 kg/ha for the new approach. Overall, the study demonstrates the need for continued efforts to enhance soil water model representation for improving biophysical process simulations.  相似文献   
4.
Urban development significantly alters the landscape by introducing widespread impervious surfaces, which quickly convey surface run‐off to streams via stormwater sewer networks, resulting in “flashy” hydrological responses. Here, we present the inadequacies of using raster‐based digital elevation models and flow‐direction algorithms to delineate large and highly urbanized watersheds and propose an alternative approach that accounts for the influence of anthropogenically modified land cover. We use a semi‐automated approach that incorporates conventional drainage networks into overland flow paths and define the maximal run‐off contributing area. In this approach, stormwater pipes are clustered according to their slope attributes, which define flow direction. Land areas drained by each cluster and contributing (or exporting) flow to a topographically delineated catchment were determined. These land masses were subsequently added or removed from the catchment, modifying both the shape and the size. Our results in a highly urbanized Toronto, Canada, area watershed indicate a moderate net increase in the directly connected watershed area by 3% relative to a topographically forced method; however, differences across three smaller scale subcatchments are greater. Compared to topographic delineation, the directly connected watershed areas of both the upper and middle subcatchments decrease by 5% and 8%, respectively, whereas the lower subcatchment area increases by 15%. This is directly related to subsurface storm sewer pipes that cross topographic boundaries. When directly connected subcatchment area is plotted against total streamflow and flashiness indices using this method, the coefficients of variation are greater (0.93 to 0.97) compared to the use of digital elevation model‐derived subcatchment areas (0.78 to 0.85). The accurate identification of watershed and subcatchment boundaries should incorporate ancillary data such as stormwater sewer networks and retention basin drainage areas to reduce water budget errors in urban systems.  相似文献   
5.
基于ARP协议的网络主机地址的识别技术研究   总被引:3,自引:0,他引:3  
从移动IPv6工作原理入手,IP地址管理器是针对越来越严重的IP地址盗用现象而设计的一套有效的监控和管理IP地址的方案。分析与研究IP地址管理器中的信息收集模块后,以Winpcap为开发工具,利用ARP,附等协议完成对网络中活动主机的扫描以及信息(主机名、MAC、操作系统)的收集和识别。模块实现了对网络的自动实时监控,有效地提高了管理效率。  相似文献   
6.
积件技术是教学软件发展的方向,探讨了用Power Builder前台结合SQL Server关系数据库后台进行多媒体教学积件管理的应用模式,并结合具体教学示例,进行了分析说明。  相似文献   
7.
The ordinary kriging method, a geostatistical interpolation technique, was applied for developing contour maps of design storm depth in northern Taiwan using intensity–duration–frequency (IDF) data. Results of variogram modelling on design storm depths indicate that the design storms can be categorized into two distinct storm types: (i) storms of short duration and high spatial variation and (ii) storms of long duration and less spatial variation. For storms of the first category, the influence range of rainfall depth decreases when the recurrence interval increases, owing to the increasing degree of their spatial independence. However, for storms of the second category, the influence range of rainfall depth does not change significantly and has an average of approximately 72 km. For very extreme events, such as events of short duration and long recurrence interval, we do not recommend usage of the established design storm contours, because most of the interstation distances exceed the influence ranges. Our study concludes that the influence range of the design storm depth is dependent on the design duration and recurrence interval and is a key factor in developing design storm contours. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
8.
介绍了我国海洋倾废的历史、发展过程和管理现状 ,分析了海洋倾倒的现状和面临的困难。文章还提出通过高新技术把疏浚泥迅速转化为再生资源进行利用和污染土无害化处理技术 ,从根本上减少疏浚泥海洋倾倒的数量和缓减海洋倾倒区紧张的状况 ,减少对海洋环境的污染  相似文献   
9.
文章阐述了地勘单位物业管理社会化的必然性和内函 ,提出发展地勘单位物业管理的基本内容和需要解决的问题 ,最终实现以业养业 ,自我发展。  相似文献   
10.
 The supraregional GIS-supported stochastical model, WEKU, for the determination of groundwater residence times in the upper aquifers of large groundwater provinces is presented. Using a two-dimensional analytical model of groundwater flow, groundwater residence times are determined within two extreme cases. In the first case, maximal groundwater residence times are calculated, representing the part of groundwater, that is drained by the main surface water of a groundwater catchment area. In the second case, minimal groundwater residence times for drainage into the nearest surface water are determined. Using explicit distribution functions of the input parameters, mean values as well as potential ranges of variations of the groundwater residence times are derived. The WEKU model has been used for the determination of groundwater residence times throughout Germany. The model results – mean values and deviations of the groundwater velocity and the maximal and minimal groundwater residence times in the upper aquifers – are presented by general maps and discussed in detail. It is shown that the groundwater residence times in the upper aquifer vary regionally, differentiated between less than 1 year and more than 2000 years. Using this information, the time scales can be specified, until measures to remediate polluted groundwater resources may lead to a substantial groundwater quality improvement in the different groundwater provinces of Germany. With respect to its supraregional scale of application, the WEKU model may serve as a useful tool for the supraregional groundwater management on a state, federal or international level. Received: 15 August 1995 · Accepted: 15 October 1995  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号